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ABSTRACT 

For each k, m and n such tha t  n > k > 2m + 1 _~ 5, we present  a convex 

(2m + 1)-polytope wi th  n + 1 vertices and 2(k~n 'n) + (n  - k)(k~nm_l 2) 

facets wi th  the  proper ty  tha t  there  is a complete descript ion of each of 

the  facets based upon a total  ordering of the vertices. 

Introduction 

We introduce a class of convex (2m + 1)-polytopes P, via a total ordering of 

the vertices of P,  which contains the cyclic (2m + 1)-polytopes and which has 

the property that  there is a complete description of the facets of each P. These 

polytopes, which we call ordinary, have been defined for m = 1 in [1] and we 

present them here for m > 1. In fact, we define an ordinary d-polytope for any 

d > 3 but show that  the polytope is not cyclic only if d = 2m + 1 (Theorem A). 

As guide-posts, we indicate the central concepts and results of our theory. 

Let P be a convex d-polytope in E d, d = 2m + 1 >__ 5, with a totally ordered 

set of vertices, say, x0 < xl < . . .  < xn. Then P is ordinary if each of its facets 

satisfies a global condition (the necessary part of Gale's Evenness Condition) and 

a local one (a specific relation among the vertices of a facet). Then there exist 

integers k and l (see Lemma 4 for the existence of k) such that  d _< k, l < n, 

conv{x0,xi} is an edge of P if and only if 1 < i < k, and conv{xn-i,xn} is an 

edge of P if and only if 1 < i < I. In fact, k is equal to l (Corollary 13) and we 
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call it the characteristic of P.  Given k and l, we list the facets of P containing x0 

or xn in Lemmas 8 and 9, and the other facets of P in Lemma 11. In Theorem 

B and its Corollary, we describe completely these facets and show that  if k is the 

characteristic of P then 

m - 1  ' 

and that  if k = n then P is cyclic. 

Finally, we note that  ordinary 3-polytopes were inspired by the idea of choos- 

ing, as vertices, points on a convex ordinary space curve in E 3. Unfortunately, 

there is as yet no definition of a convex ordinary space curve in E d for d > 3. 

However, certain types of curves in E d (for example, curves of order d) have 

properties that  are independent of d, as long as the parity of d is the same. Thus 

our expectation, in generalizing the definition of an ordinary 3-polytope, is that  

there is a new class of d-polytopes only if d = 2m + 1. As this is the case, our 

approach seems to be a reasonable one. 

1 .  D e f i n i t i o n s  

Let Y be a set of points in E d, d > 3. Then conv Y is the convex hull of Y and 

if Y = {y l , - - - ,  ys} is finite, we set 

[Yl,.--, ys] -- conv{y l , . . . ,  Ys}. 

Thus, [Yl, Y2] is the closed segment with end points Yl and Y2. 

Let V = {Xo ,X l , . . .  ,x,~} be a totally ordered set of n + 1 points in E d with 

xi < xj if and only if i < j .  We say that  xi and Xi+l are success ive  points, and 

if x~ < xj < xk then xj  s e p a r a t e s  x~ and xk or xj is b e t w e e n  xi and xk. 

Let Y C V. Then Y is c o n n e c t e d  (in V) i fx i  < xj < xk and {xi,xk} C Y 

imply that  xj E Y. If Y is not connected then clearly it can be written uniquely 

as the union of maximal connected subsets, which we call c o m p o n e n t s  of Y. 

A component X of Y is e v e n  or o d d  according to the parity of IXI = card X. 

Next, Y is a G a l e  se t  (in V) if any two points of V \ Y  are separated by an even 

number of points of Y. Finally, Y is a p a i r e d  set  if it is the union of mutually 

disjoint subsets {xi, xi+l}. 

We note that  V, 0 and all paired subsets of V are Gale sets. Conversely, let 

Y C V be a Gale set. If Y n {x0, x , }  = 0 then Y is a paired set. Thus if Y is 
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not  connected then  Y has at  most  two odd components ,  each of which contains  

xo or xn. 

We acknowledge t ha t  a connected set is an adap ta t ion  of Shephard ' s  cont iguous 

set in [5], and  t h a t  Gale sets s tem from the article [2] by Gale. 

Let  r and  s be  integers such tha t  0 < 2r < s, and let Y C V be a connected 

set wi th  IYI = s. Let  p(r ,  s)  be the number  of paired subsets  X of Y such t h a t  

IXI = 2r; t ha t  is, X is the union of r mutua l ly  disjoint pairs.  

Since p(1, s) = s - 1 = (S l l ) ,  we assume tha t  r > 2 and tha t  p ( r  - 1, s)  = 

( s - - r + l ~  Noting t h a t  p(r ,  s )  = p ( r ,  s - 1) + p ( r  - I,  s - 2), 
r--1 ]" 

p( r ,  s) = 
i----2 

E s - i - r + l  = r-l~ j 
r - 1  j = ~ - r - 1  r - 1  

i=2  

~ ° 

r - 1  
j=r--1 

cf. formula  1.52 in [3]. We shall use p(r ,  s)  to calculate the  number  of facets of 

an ord inary  poly tope .  

Let  P C E a be  a (convex) d-polytope.  For - 1  < i < d, let 9v~(P) denote  the  

set  o f / - faces  of P and  f ~ ( P )  = IJ: i(P)[ .  W h e n  there is no danger  of  confusion, we 

set 5ri = ~ ' i (P)  and ~" = ~'d-1. Let  V -- T o ( P )  = { X o , X l , . . .  ,xn} ,  n _> d. We 

set xi < xj  if and only i f / <  j ,  and call xo < Xl < " '"  < x,~ a v e r t e x  a r r a y  of P .  

If  we reverse the  ordering,  we call xn < xn-1  < "'" < Xo a r e v e r s e  v e r t e x  a r r a y  

of P .  Let  G E Jr i (P) ,  1 < i < d, such tha t  G n V  = { y 0 , y l , . . .  ,Ys} (each yj is 

some xi)  and Y0 < Yl < "'" < Ys is the  ordering induced by Xo < Xl < . --  < xn. 

We call Y0 < Yl < " '"  < Ys a n  (induced) ver tex  ar ray  of G, and set  yj = Y0 for 

j < 0 a n d y j = y s f o r j > s .  

We recall f rom [2] and  [4] t ha t  a d-poly tope  P with  the  ver tex  a r ray  xo < x l  < 

• . .  < x n  is cyc l i c  if P is simplicial and satisfies Gale ' s  Evenness  Condit ion:  A 

d e lement  subset  Y of V determines  a facet of P if and only if Y is a Gale set. 
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Fur thermore ,  if P is cyclic then  p(r, s) = (s~r) readily yields tha t  

n +  m 
h - l ( P )  = 

n + 1 - rn )  for d = 2m, 
m 

for d = 2 m +  1. 

Let  P be  a d-poly tope  with the  ver tex a r ray  x0 < xl  < . . -  < xn, n > d > 3. 

T h e n  P is o r d i n a r y  if for each facet F of P ,  

(01) F A V is a Gale set, and 

(02) if y0 < Yl < "'" < Y8 is the  (induced) ver tex array o f F  then  the  ( d - 2 ) - f a c e s  

of F are [Y0, Y l , . . . ,  Yd-2], [Ys-d+2, . . - ,  Y s - 1 ,  Ys] and [Y~-d÷2,..-, Yi-1, Yi+l, 

• . . ,  Yi+d-2] for i = 1 , . . . ,  s -- 1. 

We emphas ize  the  convention t ha t  in the descript ion of faces as in (02), the  

t e rms  yj are to be  ignored if j < 0 or j > s. 

Since cyclic d-polytopes  are simplicial, they  are clearly ordinary. Next ,  and  

this is the  reason why fo(P) = n + 1 and fo(F) = s + 1, if P is ord inary  with  

the  ver tex  a r ray  x0 < x l  < . . .  < xn then  it is ordinary with the  reverse ver tex  

a r ray  xn < Xn--1 ~ " '"  ~ XO. 

Finally, if P is an  ord inary  3-polytope  and F E J=2(P) has the  ver tex  a r r ay  

Y0 < Yl < " '"  < Y8 then  F is a polygon with the edges [Yo,Yl], [Ys-I,Y,] and 

[Yj, yj+2] for j --  0 , . . . ,  s - 2. For a descript ion of ordinary  3-polytopes,  we refer 

to [1]. As we shall see, there  are differences between the  theories of o rd inary  

3-polytopes  and ord inary  d-polytopes,  d > 4. 

2. Pre l iminar i e s  

Henceforth ,  we assume t h a t  P is an  ordinary  d-poly tope  with  the  ver tex  a r ray  

x0 < x l  < . . .  < xn, d > 4. We list some of the  consequences of  our definition, 

and  note  t h a t  L e m m a s  4, 8 and 9, and Theorem A are par t icular ly  significant. 

1. LEMMA: Let  F 6 jr with the ver tex a r ray  Yo < Y, < " '"  < Y,, and  let 

G E ~d-2 with the vertex a r ray  zl < z2 < . . .  < zt. 

1.1 fd-2(F)  = s + 1 and fo(G) <_ 2 4 -  4. 

1.2 The vertices Yi, Yi+ 1 , . . . ,  Yi+d-1 are affinely independent, i = 0 , . . . ,  s - d +  1. 

1.3 I f  s > d then [YO, Yl , . . . ,Yd-2],  [YO,Y2,... ,Yd-1]," [Y,-d+,,. . .Ys-2,Ys] and 

[Ys-d+2 , . . . ,  Ys-1, Ys] are the only ( d -  2)-faces of F tha t  are simplices. 
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1.4 I f  G c F then IF n {x~ I z~ < x~ <_ zt}l < t + 1, wi th  equali ty  for t > d; 

furthermore,  f f  t < 2d - 5 then Yo = zl  or Y8 = zt. 

1.5 [Yo, Yj] • ~'1 / / ' and  only  i f  l < j < d -  1 i f  and only  i f [ y s _ j , y , ]  • 2:1. 

1.6 I f  s > d then for j = 0 , . . . , s  - d, [Y¢,Yi+I,Yj+d-I,Yj+d] • ~c2 and  

[Yj, Yj+d] ~ ffTl" 

Proo~ T h e  first four observat ions readily follow from (02). 

5. If  1 < j _< d - 1 then  1.3 yields tha t  [Yo,Yj] is an edge of P.  Let  d < j _< s 

and  G • 9Vd_2(F) such t ha t  {Y0, Yj} C G. Clearly, 

= [Yi-d+2, . . . ,  Yi-1, Yi+I , . - . ,  Yi+d-2] 

for some i such t ha t  i - d + 2 < 0 and d _< j _< i + d - 2. Hence, 2 < i < d -  2 and  

it follows tha t  Yl E G. But  then  [Y0, yj] is not the  intersection of (d - 2)-faces of 

F ,  and it is not  an edge of P .  

By the  reverse ver tex  array, we obta in  the second par t  of 1.5. 

6. Let  0 _< j < s - d. Since d _> 4, we have t ha t  

j+d--2 

N [Yi-d+2, . . . ,  Yi-1, Yi+I , . . . ,  Yi+d-2] = [Yj, Yj+I, Yj+d-1, Yj+d] 
i=j+2 

is a face of P .  I t  is now easy to check tha t  if {Yj ,Yj+d} C G E ~ 'd -2 (F)  

then  {Y j+l ,Y j+d-a}  C G. Thus,  [Yj,Yj+d] ~ 2:~ and f rom this it follows tha t  

[Yj ,Yj+I ,Yj+d-I ,Yj+d]  E ~2. I 

2. LEMMA: Let  F E Jr wi th  the ver tex  ar ray  Yo < "'" < Yr < Yr+I < "'" < 

Yt--1 < Yt < ' ' "  < Ys, {Yr, Yr-bl} = {Xj ,X j+I}  atld { Y t - l , Y t }  = {X l - l ,X t } .  

2.1 IF r >_ 1 and s >_ r + d - 1  then yr_l  = x j - 1 .  

2.2 / f t  < s -  1 and  d -  1 <__ t then Yt+l = Xt+l. 

Proof: 1. L e t r > l  a n d s _ > r + d - 1 .  T h e n 2 < r + l < s - d + 2 < s - 2 a n d  

G = [Yr-d+3,. • •, Yr, Yr+2 , . . . ,  Yr+d-1] E -Td-2. 

Let  F '  E .T with  the  ver tex a r ray  Zo < zl < . . .  < z~ such t ha t  F '  M F = G. Then  

F' N {x j , x j+ l }  = {xj}, Xj > X 0 and (01) imply t ha t  x j - 1  and x j  are successive 

vertices of  F ' .  Clearly 

G = [Zi_d+2,... , Zi_l, Z i+l , . . .  , Zi+d_2] 
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for some 1 < i < u - 1. Since I{Y~+2,-..,Y~+d-~}I = d - 2, it follows that  

{Y~-I, Y~} C {Zi-d+2,---, zi-1}. Hence, Y~-I and y~ = xj are successive vertices 

of F ' ,  and Y~-I = x j - 1 .  

2. L e t d - l < t < s - 1 .  Then 

G = [ Y t - d + l , . . .  , Y t - 2 , Y t , . . .  ,Yt+d-1] E .7::d-2 

and, with F '  defined as above, xt and Xl+l are successive vertices of F ' .  Now, 

] { Y t - d + l , . . . , Y t - 2 } ]  = d - 2  yields { y t , y t + l }  C {zi+l , . . . ,Zi+d-2} and Yt+i = 

xl+l. I 

Let V ° = {xi E V I[Xo, xi] E -~'1 } and ~-o = {F E 9r[ xo E F}.  

3. LEMMA: L e t  xo ~ x i  E F E j :o.  T h e n  [FM V°[ = d -  1, and xi  E V ° i f  and 

on l y  i f  IF n {xo , . . . ,  x~}l _< d. 

P r o o ~  Apply 1.5. I 

4. LEMMA: There is an in teger  k such t ha t  d < k < n and  V ° = { x l , . . .  ,xk}. 

Proof:  Let k < n be the largest integer such that  Xk E V °. Clearly, k > d. We 

show that  i > 2 and xi E V ° imply that xi-1 E V °. 

Let ~ '  = {F E Z" ] {xo, xi} C F}.  Then the edge [xo, xi] is the intersection 
t . ~ L J  

of all t h e F  E ~ ,  and by3 . ,  I F M { x o , . .  ,x~}] <_ d f o r e a c h F  E . Thus, if 

by' xi-1 E F E then I FM {Xo, . . . ,x i_l}]  _< d and xi-1 E V °. 

If 2 < i < n - 1 then for any F E Z", F N {x~-l, xi+l } ~ 0 by (01). Since there 
Z" must be an F E such that  xi+l ~ F,  we have that xi-1 E F.  

If i n then each F E is a ( d -  1)-simplex by 3. Let r be the largest integer 
~-, 

such that  r < n and there is an Fr E with xr E Ft. Let Yo < Yl < "'" < Yd-1 

be the vertex array of Ft. Then Yo = xo, Yd-2 = Xr, Yd-1 = Xn and 

G = [yo , - . . ,  y~-4,  xr, x , ]  E $'d-2. 

Let F '  $" F '  F '  E such that  M Fr = G. If Xr+l ¢ x ,  then x~-i  E n Fr by (01). 

Since x~-i  E F~ implies x~-i  -- Yd-3,  and xr-1 E G implies xr-1 = Yd-4,  it 

follows that  xr+l  = xn  and xr  = Xn-1 .  I 
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5. LEMMA: Le t  V ° = { x l , . . .  ,Xk} .  Le t  F • :T O wi th  the  ver tex  array x0 < Yl < 

• "" < Ys and Xd <_ Yd-1. 

5.1 / /  d = 2m then ei ther  Xk = Yd-1 and { Y l , . . . , Y d - 2 }  is a paired sub- 

set o f  { x l , . . . , x k - 1 }  or x~ = y~ and {Y2,... ,Yd-1} is a paired subse t  o[ 

5.2 I f  d = 2 m +  1 then ei ther {Yl , . . . ,  Yd-I } is a paired subset o[ { x l , .  . . , xk  } or 

x l  = Yl, xk  = Yd-1 and {Y2,.. . ,  Yd-2} is a paired subset of {x~ , . . . ,  Xk-1} .  

Proof: We note that  by 1.5 and 4., Yd-1 <__ Xk. Next, Yd-1 ~_ Xd implies that  

{x0, Y l , . . . ,  Yd-1} is not connected. Thus, the two assertions in both  5.1 and 5.2 

are mutual ly exclusive. 

1. Let d = 2m. If { x o , y l , . . .  ,Yd-1}  is paired then xl = Yl and {Y2,... ,Yd-1}  

is paired. If {xO, Yl , - . . ,Yd-1} is not paired then because it is not connected, 

it has exactly two odd components. One component contains x0 and the other 

contains Yd-1. By (01), the latter is not possible if Yd-1 < Xk. Hence, Yd-1 : xk  

and {Yl , . - . ,  Yd-2} is paired. 

2. Let d = 2m + 1. Since {xo ,y l , . . .  ,Yd-1} is not connected and contains an 

odd number  of elements, it has exactly one odd component which contains either 

Xo or Yd-1. In case of the former, {Yl,--- ,Ya-1} is paired. In case of the latter, 

we have xl = yl,  {Y2,... ,Yd-2} is paired and, as above, Yd-1 : Xk. | 

We note that  while the assertions in 5 are somewhat repetitive, they make it 

easier to list the facets in ~-o. Our goal now is to list the d element subsets of 

V ° t3 {Xo} tha t  by 1.2 and 3., determine the facets in .T °. 

6. LEMMA: Let  V ° = { x l , . . . , x k } .  For each i n t e g e r r  such that  d -  1 < r < k, 

there is an F e :T O such tha t  xr  • F and I F n  {x0 , . . . , x r} ]  = d; tha t  is, xr • 

F N  Y ° C_ { z l , . . . , z ~ } .  

Proof'. Since the assertion is true for r = k, we show that  if it is true for r, 

d < r < k, then it is true for r - 1. Let d < r < k and let F E 5 r °  with the vertex 

array Xo < Yl < "'" < Ys, x r  = Yd-1. 

If r = n then F = [xo, Yl,. • •, Yd-2, xn] is a ( d -  1)-simplex by 3. From the proof 

of 4., we may assume that  x,~-i  = Yd-2. We note that  G = Ix0, Y l , . . . ,  Yd-3, Xn-1] 

E ~-~-2 and so, there is an F '  E ~" such that  F '  A F  = G. Then xn ~ F ' ,  F '  E JZo 

and xn-1 • F '  N V  ° C_ { X l , . . . , x n - 1 } .  
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Let  r < n - 1. Since r _> d and IF n {Xl,... ,x~}l = d -  1, it follows tha t  there 

is an integer j such tha t  2 <_ j < r and 

F n {~j_~, . . . ,x r}  = { z j , . . . , ~ } .  

If  x~+l ¢ F then x j - 1  ~ F and (01) yield tha t  { x j , . . .  ,x~} is an even compo- 

nent  of F M V, j < r - 1 and x~- i  = Yd-2. By (02), 

G = [xo, Y l , . . . ,  yd-a,  z~- l ]  C $-d-2. 

Let F '  F '  F '  " ' . F '  e . T ' s u c h  tha t  N F = G .  Then  E . T ° , x r ~ F , { x j , . .  ,X~- l}  C 

and by 1.4, I F ' M { X o , . . . , x ~ - l } ]  < d. Since I { x j , . . . , x r _ l } l  is odd, it follows 

F I  , ,  tha t  x j - 1  C and F '  M{Xo,. ,X~-l} = d. 

If  x r+l  E F then Xr+l ¢ V ° and 4. imply tha t  r = k. Since 

d = [~o, y : , . . . ,  yd-l]  = [xo, y ~ , . . . ,  yd-~, xk] e 7d-~,  

there is an F E ~" such tha t  F f3 F = G. We note tha t  _~ E $-o, Xk+l @/~ and 

xk C F M V ° C { x l , . . .  ,x}} by 4. We argue now as in the preceding paragraph  

to verify the assertion for k - 1. I 

7. LEMMA: Let  V ° = { X l , . . .  ,Xk}, d < k < n. Let d - 1 < r < k and F C .T ° 

such tha t  zr  e F and I F n  {z o , . . .  ,Xr}l -= d. Let  {Xj,Xj+I} C F A Y for some 

l < j < r - 2 .  

7.1 If j > 1 and x j -1  ~ F then there is an F E 5 r°  such tha t  

P M V ° = ( ( F M  V°)\{Xj+l}) U {Xj_l}. 

7.2 If  j < r -- 2 and xj+2 ~t F then there is an _P E -T O such tha t  

P n v ° = ((F n V°)\{x~}) u {xj+~}. 

Proof: Let yo < Yl < "'" < Ys be the vertex array o f F .  

Xr = Yd-1 and F M  V ° = { Y l , . . . , Y d - 1 } .  For 2 < i < d - 2 ,  

Then  xo = Yo, 

Gi = [Yo,. • •, yi-1,  Yi+l,. • . ,  Y~+d-2] E 5rd-2 

and there is an Fi E ~" such tha t  F~ fq F =- Gi. We note tha t  Fi E jro and 

( F  M Y°) \{y i}  C Fi fq Y °. 
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I f . j  > 1 and xj-1 ¢ F then with {x j , x j+:)  = {Yi-l,Yi}, (0:) yields that  

xj-1 • Fi. I f j  < r - 2  and xj+2 ¢ F then with {x j , x j+l}  = {Yi, Yi+l}, (0:) 

yields tha t  xj+2 • Fi. Now by 3. and 4., _~ = Fi in each case. | 

In view of the preceding lemmas, we can now list all the facets in 9 r° .  Hence- 

forth, we let Sj denote a paired set of vertices of cardinality j > 0, and set 

So=q}. 

8. LEMMA: Let V ° = { x l , . . .  ,xk}.  

8.: If  d = 2m then 

9 cO --{F0,1(Sd-2)ISd-2 C {X2, . . .  ,Xk}} 

U{Fo~(&_~)[ &_~ c {x: , . . .  ,x~_,}} 

where 

and 

Fo,l(gd_2) n {xo,... ,Xk} = {xO,Xl} U Sd_ 2 

Fo~(&_~) n {xo,. . .  ,xk} = {~0} u &_~ u {~k}. 

8.2 I f  d =  2m + 1 then 

r ° ={Fo(Sd_:) l&-:  c {~:,...,~k}} 

U{Fok, x(&-3)l &-3 C (x2,... ,xk-X}} 

where 

and 

Fo(Sd_l) N {Xo,...  ,Xk } ~- {Xo} U Sd- 1 

F~I(Sd-3) n {X0,... ,Xk} : {X0,Xl} U Sd-3 U {Xk}. 

We note tha t  8. states simply tha t  if Q is the vertex figure of P at xo deter- 

mined by a hyperplane H and if {z~) = H n [Xo, x~] for i = 1 , . . . ,  k then  Q is a 

cyclic (d - 1)-polytope with the vertex array *o < z, < "'" < *k. Also, if d = 2m 

then 

I °I : 2p(m- : , k -  : ) :  2( k -  \ ~  - :] 

and if d = 2m + 1 then 

[7°[ = p(m, k) + p ( m  - :, k - 2) 

_(,:)+(,==l,) (,=m) 
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Next, let 

V* = {X i e V[[xn- i ,Xn]  e .~1} and ~r* = { F  e ~ ' [xn  e F} .  

By reversing the vertex array, we obtain tha t  there is an l such tha t  d < l < n 

and V* = { x ~ - t , . . .  , xn-1} ,  and the analogues of 3, 5, 6 and 7. 

9. LEMMA: Let  V* = { x , - t , . . . , X ~ - l }  

9.1 I f  d = 2 m  then 

y* ={F~-~,~(Sd-2)ISa-= c {=,,_,... ,=,,_=}} 
U{F2-i(Sd-2)[ Sd-2 C {x, , - t+ l , . . .  ,x,~-x}} 

where 

and  

v._i , . (S~_2)  n {x~_l , . . .  , z . }  = sd-~ u {X~_l,X~} 

F,~-l t S x ,~ t d-2jn{x,~- t , . . . ,x ,~}= {xn-t}U Sd-2U{X,n}. 

9.2 If d-- 2m + 1 then 

Y *  = { F n ( S 4 - 1 ) I S d - 1  C {x~_ , , . . .  , x ~ - l } }  

U{F:--~,n (Sd-3)1 c {=n-,+,, .., } } 

where 

and 

Fn(S,t-O n {x~_. . . .  ,x~} = Sd-1 U {x.} 

n - l  
Sn_l ,n(Sd_3)  n {=~-t,. . .  ,=~} = {x,- t )  u Sd-a u {X~_l,X,}. 

We are now ready to exclude the case d = 2m from our considerations. 

THEOREM A: Let P be an ordinary  d-poly tope wi th  the vertex a r ray  Xo < Xl < 

• ..  < xn,  d = 2 m  >_ 4. Then  P is cyclic. 

Proof: 

(i) [=o, =.1 ~ Yl: 
We suppose tha t  V ° = {Xx,. . .  ,Xk}, d _< k < n, and seek a contradict ion.  

By 8.1, there is an F E 3 t o  with the vertex array Yo < Yl < "'" < Y8 such 
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t h a t  {Yo,. . . ,Yd-1} = {Xo, Xl, . . . ,Xd-2,Xk}.  Since d < k < n, Xk-1 ~ F and 

Xk+l E F .  By (02), 

c = [yo, y -l] = [xo, 

Let  F' F' F' E ~ ' s u c h  t ha t  N F = G .  ThenF 'M{Xl ,Xk+l}=Oandxk_ l  E . By 

1.4, 

F ' n  {xo, . . .  = 

Hence, Xl and xk+l  are separa ted  by an odd number  d - 1 of vert ices of F ' ,  a 

contradict ion.  Thus,  [Xo, x,~] E ~'1 and k = n = I. 

(ii) P Is SIMPLICAL: 

We suppose  t ha t  

.7:' = ( F 6.7: I f o ( F ) > d + 1} 

is not  e m p t y  and seek a contradict ion.  

Since k = n = l, ~"  f3 (~-o t3 9 v*) = 0 by 3. Let  F C 7 wi th  the  ver tex  a r ray  

Yo < yl  < " "  < Ys- T h e n  F N  {xo,xn} = 0 implies t ha t  {Yo, Yl , . . . ,Ys}  i s a  

paired set and  s > d + 1. Let  

{Y0, Yl, Yd, Yd+l} ---- {Xi, Xi+l, Xv, Xv+l} 

for some sui table  i and v. We note  t ha t  i _> 1. Wi thou t  loss of generality, we 

m a y  assume tha t  if F 6 5 r '  t h e n / ~ f 3  V C { x i , . . .  , x~_ l} .  

We observe t ha t  

G = [YO,Yl,Y3,... ,Yd] 6 .T'd-2 

F' .~' F' by (02), and  there  is an C such tha t  M F = G. Since fo(G) = d, 

M{x~ lyo <_xj <_ye} = d +  l 

by 1.4. Since F '  Cl {xi- l ,xv+l} --- 0 and d +  1 is odd,  the  set above is not  paired;  

a contradict ion.  

(iii) FOR EACH S d C {Xl , . . .  , x n - 1 } ,  THERE IS AN F E ~" SUCH THAT F M V  = 

Sa: 

Let {Yo,... ,Yd-1} C V be a paired set  wi th  xo < Yo < " '"  < Yd-1 < xn. T h e n  

{y0,yl}  -- {Xr,Xr.t-1} for s o m e r  >__ 1, a n d y 2  = xt for s o m e t  >_ r + 2 .  Since 

Sd-2 ---- {Y2,. . .  ,Yd-1} C {Xr+2 , - . - ,Xn-1} ,  it follows f rom 8.1 and k -- n t h a t  

[xo,xl,y2,. . .  ,yd-1] E ~.  
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Then  G -- Ix1, Y2, . . . ,  Ya-1] E -~d-2 by (02). Since Y2 = xt > xr+2 > x3 and P is 

simplicial, it is clear tha t  

[xl, z2, Y2,.. .  , Yd-1] 

is the other  facet of P containing G. Reiteration of this argument  yields tha t  

[xi, xi+l ,  y2 , . . . ,  y~-~] ~ 9 r 

for i = 1 , . . . ,  t - 2, and hence for i = r. 

(iv) P Is CYCLm: By 8., 9., the preceding and (01), we have tha t  P is simplicial 

and satisfies Gale 's  Evenness Condition. | 

3. O r d i n a r y  ( 2 m +  1 ) - p o l y t o p e s  

In  this section, we assume tha t  d = 2m + 1 > 5. From 8.2 and 9.2, we have the 

facets of P passing through x0 or xn. We proceed now with the task of finding 

the remaining facets of P .  

10. LEMMA: Let  V ° = { x l , . . .  ,xk}, d < k < n - 2 and 1 < i < n - k - 1. Let 

j be an odd integer, 1 <_ j < d - 2, Sd- j -2  C_ {xi+2, . . .  , x i+k- j -1}  and F E 

such that 

F A { x i - 1 , . . . ,  x~+k} = {x~-l,  x~} U Sd- j -2  U { x , + k _ j , . . . ,  xi+k}. 

F '  Then there is an E ~ such that 

F' n { z , . . . ,  z~+k+i} = {z~, z~+l} u Sd-j -2  u { z~+k- j+ l , . . . ,  z~+k+l}. 

Proof'. Let Y0 < Yl < "'" < Ys be the vertex array of F .  Then  

F N { x i _ l ,  . . . , x i + k  } = { Y r - 2 , .  . . , Y r - 2 + d }  

for some 2 < r < s - d + 2 .  We note tha t  {Yr-2, Yr-1} = {xi-1,  xi} and yr >_ xi+2. 

Hence, s < r + d - 2 by 2.1; t ha t  is, s = r + d - 2 and 

F n {X~- l , . . . ,x~+k}  = { y s - ~ , . . . , y s } .  

From 1.6, [xi-1, xi+k] = [Ys-d, Ys] ¢ ~1. Since 

G ----- [ Y s - j - d + 2 , . . . ,  Y s - j - 1 ,  Y s - j + l , . . . ,  Y s - j + d - 2 ]  E - ~ d - 2  



Vol. 102, 1997 ORDINARY (2m -I- 1)-POLYTOPES 113 

for 1 < j < d - 2 and x i+k- j  = Ys-j, we have that  

G = [ Y s - j - d + 2 , . . . , Y s - j - l , X i + k - j + l , . . . , X i + k ] .  

Let F'  C ~ such that  F '  r q F  = G. Then xi+k- j  ~ F ' ,  i + k  < n and 

I{x i+k - j+ l , . . .  ,xi+k}l = j (odd) yield that  xi+k+l C F ' .  

If  j = 1 then Ys-j -d+2 = Ys-d+l -'- Yr-1 = Xi and x~-i ¢~ G. Thus, xi-1 ~ F '  

and xi+l E F ' .  Let j > 3. Then Ys-j-d+2 < Ys-d ---- xi-1 and 

G N { X i _ l , . . .  , Xn} -~- {Xi-1, Xi} U S d - j - 2  U {Xi+k_j+l , . . .  , Xi+k). 

Since [xi-1, xi+k] ~t ~-1, it follows from 1.4 and 1.5 that  there is exactly one vertex 

x o f F '  such that  x ~ G and xi-1 <_ x < xi+k. Then Xi+k-j  ~ F '  and (01) clearly 

yield that  x = Xi+l. m 

11. LEMMA: Let  V ° = { X l , . . .  ,Xk}, d < k < n - 1 and 0 < i < n - k - 1. For 

each Sd_ 3 C {Xi+2,... ,Xi+k-1}, there is a facet Fi(Sd_3) of  P such that  

Fi(Sd_3) n { X i , . . . ,  Xi+k-4-1} = (Xi, Xi-4-1} U ~d-3 U {Xi.4-k, Xi+k-4-1}. 

Proof: We note that  by 8.2, the assertion is true for i = 0. (Since k < n, 

Xk+l e F~I (Sd -3 ) . )  Let 1 < i < n - k - 1 and assume that  the assertion is true 

f o r / -  1. 

Let Sd-3 C {Xi+2,. . .  ,Xi+k-1}.  If xi+k-1 ¢ Sd-3 then F i - I ( S d - 3 )  exists by 

the induction hypothesis. Since 

Fi_ l (  Sd_3) CI {Xi_l , .  .. ,Xi+k } ---- {X i - l ,X i }  U Sd-3 U {Xi+k-l ,Xi+k }, 

the existence of Fi(Sa-3)  follows from 10. with j = 1. Let xi+k-1 E Sd-3.  Since 

Sd-3 is paired, there is a largest odd integer j such that  3 _< j < d - 2 and 

x i+k- j  ~ Sd-3.  Then 

Sd_ 3 = Sd_j_  2 U { Xi+k_j+l, . . . , x i+k-1} 

with 

and 

Sd-~-2 = Sd-a n {zi+2, . . .  , x i+k- j -1} ,  

is a paired set of cardinality d -  3. 

Fi(Sd-3)  exists by 10. | 

S' = S d - j - 2  u { x i + k - j , . . .  ,xi+k-2} 

Now, F i - I ( S ' )  exists by induction, and 
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12. COROLLARY: Let V ° = {x] , . . .  ,Xk), d < k < n -  1. Then 

[xi,xi+l,xi+k,xi+k+l] e ~2 for i = 0 , . . .  , n  -- k - 1. 

Proo£" Let  0 < i < n -  k -  1, Sd-3 C {xi+2, . . . ,x i+k-1}  and  Y0 < Yl < 

• "" < Ys be  the  ver tex  a r ray  of Fi(Sa-3). Then  Fi(Sd-3) A {x i , . . .  ,Xi+k+l} = 

{Yj , . . . ,Y j+d}  for some 0_< j < s - -  d, and  

[xi, Xi+l, Zi+k, xi+k+l]  = [yj, Yj+I, Yj+d-1, Yj+d] C ~'2 

by 1.6. | 

13. COROLLARY: Let V ° = { x l , . . .  ,Xk}, d < k < n. Then 

V* = { z ~ - k , . . . , x n - 1 } .  

Proof." As  we have a l r eady  noted,  V* = { x n - l , . . .  , x n - 1 }  for some d < l < n. 

If  k = n then  [xo, x~] E $'1, and  n = I. 

Let  k < n -  1 and  consider  Sd-3 = {Xn-d+2 , . . .  ,Xn-2} C { X ~ - k + l , . . .  , x n - 2 } .  

By 11 ,  F,~-k-l(Sd-3)  exists  and  

F,~-k-l(Sd-3)  rq { x , ~ - k - ] , . . .  ,x,~) = {x ,~ -k - l , xn -k}  U Sd-3 LJ {x,~_],xn}. 

By 1.5, [X,~-k,Xn] C $1.  Thus  n - I < n - k and  k _< l. Now by reversing the  

ve r tex  array,  l < k. 1 

Since Iv ° l  = IY*f = k for some d < k < n, we call  k the  c h a r a c t e r i s t i c  of P 

a n d  wr i te  k = char  P .  

For  i = 0 , . . . , n -  d +  1, let 

:F i = {F  • :£1xi  • F n Y  C_ { x i , . . . , x , } } .  

_ i i~-d+l  u i .  Final ly ,  let Since IF  N V I > d for any  F • ~ ,  we have tha t  ~" = wi=o 

2~ = {Fi(Sd-3) I Sd-3 C {x i+2, . . . , x i+k-1}  and i = 0 , . . . , n -  k -  1} 

when  k <_ n - 1, and  set ~ = O otherwise.  

As  no ted  in the  in t roduc t ion ,  L e m m a  11 will yield all  the  facets of P not  

con ta in ing  xo or xn.  This  next  L e m m a  will enable  us to prove it. 
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14. LEMMA: Let  k = c h a r P ,  F E J: wi th  the ver tex  ar ray  Yo < Yl < "'" < y~ 

and  {Yo,Yl} = { x i , x i + l } .  Then  Yd-3 <-- x i+k-2.  

Proof." If  i = 0 then Yd-1 <_ Xk by 8.2, and the assertion follows. Let i _> 1 and 

assume tha t  if F E -%" with the vertex array Zo < zl < . . .  < zt and {Zo,Zl} = 

{x~_l ,x~}  then zd-3 <_ Xi+k-3. 

Since Yo ~ Xo and F N V is a Gale set, we have tha t  {Yo, . . . ,  Yd-2} is a paired 

set and either Yd-1 = xn or s >_ d and {Yd- l ,Yd}  is a paired set. 

If Yd-1 = Xn then F E ~'*. Now 9.2 implies tha t  Sd-1 = {xi ,  Xi+l, Y o , . . . ,  Yd-2} 

C {x,~-k , . . .  , xn -1}  and F = Fn(Sd_ l ) .  Hence, xn-k  < xi and Yd-3 ~ Xn-2 : 

x(~-k)+(k-2) _< xi+k-2.  Let s _> d and, say, 

{Yd-3, Yd-2, Yd- i ,  Yd} = {Xj,  Xj+I, Xl, Xl+I}. 

We note tha t  

G '  = [yo, Y2, . . . ,  Yd-1] = [xi, y ~ , . . . ,  Yd-2, Xl] E .7:4-2. 

Let F '  F '  G '  E ~" with the vertex array wo < wl < " "  < wr such tha t  n F = . 

Since F '  -- = n {x i+ l ,X t+l}  0, we have tha t  {Xi- l ,Xl-1}  C F ' .  Then  fo (G' )  

d -  1 < 2 d -  5 and 1.4 yield tha t  xl -- Yd-1 ---- Wr, and so xl-1 -- w~-l .  From 

f o (G ' )  -- d -  1 and 1.3, 

either G'  [Wr-d+2,. .  w=] or [W=-d+l,. W~-2, W=]. 

In ease of  the former, Yl and Yd are separated by the d -  2 (odd) vertices 

y2 , . . .  ,Yd-1 of F ' .  Hence, 

[yo, y 2 , . . . ,  yd- ] = 

and 

{ W r - d , . . .  ,Wr} -~ { X i - l , X i , y 2 , . . .  , Y d - 2 , X l - l , X l } .  

Accordingly, 
= [ w r - d , . . . ,  w r - 3 ,  

= [Xi- l ,Xi ,  y 2 , . . .  ,Yd-3,  Xl- l ,Xl]  e ~d-2" 

• " F '  Let F E ~" with the  vertex array z0 < Zl < < zt such tha t  1 ~ N = G. 

Since fo(G)  = d _< 2d - 5, it follows from 1.4 tha t  there is exactly one vertex z 

of F such tha t  z ~t G and xi -1  <__ z _< xl, and z0 = xi-1 or zt = xl.  Since 

Xi-1,  Xi, Y2, • • •, Yd-4, Xl--1, Xl} 
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is a paired set, xj  = Yd-3  and x j+ l  = Yd-2  ~ F ,  it follows that  x j -1  E F and 

X i ~ Z ~_ Xj_ 1. 

If  zo = xi-1 then { x l - l , x ~ }  = { Z d - l , Z d } .  Thus z _< x j -1  implies tha t  xj = 

Yd-3  = Zd-2 ,  and x j - 1  = Zd-3.  By the induction, x j -1  _< x i + k - 3  and so x j  <_ 

Xi+k--2. 

Let z t  = xL. Then  

{X i_ l ,X i )  -~ {Zt_d, Zt_d+l} and {Xj--I,Xj,XI--1} -~ {Zt_3,Zt_2,Zt_l} .  

We note tha t  

-~- [Zu_d+2, . . . , z u _ l  , zu+ l , . . . , zu+d_2] 

for some t - d + 2  < u < t - 3 .  Now u <_ t - 3  implies tha t  u - d + 2  < t - d .  Therefore 

Zu-d+2 < Z t - d  and our convention yield tha t  Z t - d  = Zo. Since Zo = xi-1 ,  

Yd-3  = x j  ~_ X i + k - 2  from above. | 

15. LEMMA: L e t  P be  an  o r d i n a r y  d - p o l y t o p e  w i t h  t h e  v e r t e x  ar ray  

xo < Xl  < . . .  < x n  a n d  t h e  c h a r a c t e r i s t i c  k ,  d = 2 m  + 1 >_ 5. T h e n  

= F o U f ~ U 3 v * .  

Proof ' .  Let  F C ~" with the vertex array Yo < Yl < "'" < Ys. We may  assume 

tha t  Xo < Yo. Then  

S _l = {yo, . . . ,  yd-2} 

is a paired set with, say, {Yo, Yl } = {zi, x~+l } and { Y d - 3 ,  Y d - 2 }  = ( X j ,  Xj+I}. By 

14., j ~ i +  k -  2; tha t  is, 

sO_ 1 C {Xi, . . . ,Xi-{-k-1} ~ {X( j - k )+2 , . . . ,X j+ l} .  

Then  

and 

= { y o , . . .  c 

S~__3 = ' { y 2 , . . . , Y d - 2  } C {Xi+2, . . . ,X iTk-1} .  

We note  tha t  x j+ l  = y d - 2  <_ Xn--1 and G = [Yo,. . . ,  Yd-2] E ~'d-2. 

I f i  > n -- k then S°_1  C { x n - k , . . .  , xn -1}  and 9.2 imply tha t  G C Fn(S~_I) .  

I f  i _< n - k - 1  then  S~_ a C {x i+2 , . . . ,  x i+k- i}  and 11. yield tha t  G C Fi(S~_3). 
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I f j  _< k - 1 then S°_1 C {~l , . . . ,Xk} and 8.2 imply that G C F0(Sd0_I). If 

j _> k then S~_ 3 C { x ( j - k ) + 2 , . . . , x ( j - k ) + k - 1 } ,  0 _< j -- k _< n -  k -  2 and 11. 

yield that  G C Fj_k(S~_3). 

Since G is the intersection of exactly two facets of P,  it follows that  F E ~tA ~'*. 
| 

We can now list all the facets of P and it remains only to describe them in 

terms of their vertices. To that end, we use the decomposition 

n - d - k 1  

.~'= ~ .  
i = 0  

THEOREM B: Let  P be an ordinary d-polytope with the vertex array 

Xo < 21 < . . .  < x,~ and the characteristic k,  d = 2m + 1 >_ 5. Then 

f d - l ( P ) = 2 ( k m m )  + ( n - k ) (  k-m-2)m-1 

and, wi th  {y i+ l , . . . ,  Yi+j} denot ing a paired set  o f  cardinality j ,  the following 

are the facets o f  P.  

B1. For j = d -  2 , . . . , k -  2 and {Yl,. . . ,Yd-3} C { x l , . . . , x j - 1 } ,  

I x 0 ,  Y l ,  • • • ,  Y d - 3 ,  x j ,  x j _ k l  ]. 

B2. For r = 0 , . . . , m - 2  and {Y2~+I,...,Yd-3} C {x2~+2,. . . ,xk-2},  

and 

[X0~  - - - ~ X 2 r ~  Y 2 r + l  ~ • • • ,  Y d - 3 ~  X k - - 1  ~ • • • ~ X k + 2 r ]  

[ X 0 ,  • . . , X d - 3 ,  X k - 1 ,  • . . , X k + d - 3 ] .  

B3. For i = O,. . . , n  - k - l ,  r = O,. . . , m  - 2, 

{Y2~+2,..., Yd-2} C {zi+2~+3,... ,  Xi+k-1} 

a n d  Y d - 2  ~ x k + i - 1  for i > O, 

[•i ,  . • • , X i +  2 r +  l , Y 2 r + 2 ,  • • • ,  Y d - 2 ,  X k + i ,  . • • ,  X k + i +  2r-b l ] 

and 

[Xi ,  • . .  , X i + d - 2 ,  X k T i ,  • . . , X k + i + d - 2 ] "  
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B4. For {Yl , - . - ,Yd-3}  C {xn-k+2,. . .  ,Xn--1} and, Yd-3 ~ xn-1 i l k  < n, 

[ X n - k ,  X n - k ÷  l ~ Y l  , • • •, Y d - 3 ,  Xn]. 

B5. For j = d - 2 , . . .  ,k  - 2 and {Y l , . . .  ,Yd-3} C {xn - j+ l , . . .  ,Xn-1},  

Proof B 1: 

Set 

[Xn--j--1,  X n - - j ,  Y l  , • • • ~ Y d - 3 ,  Xn]. 

Let  d -  2 < j < k -  2 and  Sd-~ = {Yl , . . . ,YU-3} C { x l , . . . , x j - 1 } .  

~ d - 1  = ~ d - 3  I.J { X j ,  X j +  1 } and  S~_ a = S d _ l \ { Y l ,  Y2}. 

From Sd-1 C { X l , . . .  , x k - 1 }  and 8.2, 

Fo(Sd-1) n { Z o , . . . ,  ~k} = {Xo} u Sd-1 = {~o, y , , . . . ,  yd-~, xj,  x j+ i } .  

Let  xo < Yl < "'" < Ys be  the  ver tex  a r ray  of Fo(Sd-1). Then  Yd-1 : Xj+l, and  

we need to  show tha t  s = d -  1. By 3., we may  assume tha t  k < n. Since 2.1 

(wi th  r --  1) implies  t h a t  if Yl ¢ Xl then  s < 1 + d - 1, we may  assume also t h a t  

Yl = Xl. Then  Y2 = x2 and  S~_ 3 C { x 3 , . . .  ,xk}.  If k < n - 1 then  from 11., 

F,(S~_3)n{xl,..., xk+~} = {Xl,  x 2 } u s ~ _ 3 u { x k ÷ l ,  x k + 2 }  =- S d - I U { X k + I ,  X k + 2 } .  

Let  zo < Zl <: . . .  < zt be the  ver tex  a r ray  of F1(S~_3). We recal l  t h a t  

[Xo,Xl,Xk,Xk+l] E 9v2 by 12. Therefore,  xk ~ FI(S~_ 3) impl ies  t h a t  Xo 

F1(S~_3) , and  { Z o , . . . ,  zd-2} = S~-1.  Since 

a = [ zo , . . . ,  z~_21 = [yl, y 2 , . . . ,  yd-3, ~j,  xj+l]  

is a ( d -  2)-face of P such t ha t  G C Fo(Sd-1), fo(G) --- d -  1 and Xo @ G, i t  

follows from 1.3 t h a t  Y8 E G; t ha t  is, Yd-1 : Xj+l -= Ys. 

If  k = n - I t hen  we need only t ha t  x,~ ~ Fo(Sd-1). This  is i m m e d i a t e  since 

[Xo,Xl,X,~-l,Xn] E $'2, {Xo,Xl} C Fo(Sd-1) and x,~-i ~ Fo(Sd-1). 

B2. Le t  0 < r < m - 2, { y 2 r + l , . . .  ,ya-3} C {x2~+2, . . .  , x k - 2 }  and  S~_ 1 C 

{ x l , . . .  , xk}  such t h a t  

{Xo} U S r d-1 -= {xo, • • , x2r, Y2~+1,. • •, Yd-3, Xk-1, Xk}. 

From 8.2, 

Fo(Sh_,) n {Zo,..., ~k} = {~o} u SL1. 
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We may assume that  k < n. Then {xo, xk} C Fo(S~_I) and 12. yield that  for 

j =  l , . . . , n - k - 1 ,  

xj E Fo(S~_I) if and only if Xj+k E Fo(S~_I). 

Thus, {Xo,.. .  ,x2r} C Fo(S~_I) implies that  

Fo(S~_I) ["] {Xo,.. .,xk+2r} ---- {X0,...,X2r,Y2r+l,...,Yd_3,Xk_l,...,Xk+2r}. 

Let Y0 < Yl < "'" < Ys be the vertex array of F0(S~_I). Then Xk+2~ = Yd+2r-1, 

and Y2~+1 # x2~+1 and 2.1 imply that  s < 2r + 1 + d - 1 = d + 2r. 

We observe that  with Sd-1 = {x l , . . .  ,Xd-z,Xk-I,Xk}, 8.2 yields that  

Fo(Sd-1) n {x0 , . . . ,  xk } = {x0 , . . . ,  Xd-3, Xk-1,  Xk }. 

Now, we argue as above and obtain that  

F0(Sd-1) = [Xo,... ,  ~d-3, xk -1 , . . - ,  ~k+d-3]. 

We may think of this facet as the r = m - 1 case. 

B3. L e t O < i < n - k - l , O < r < m - 2 ,  

and S~_ 3 C {xi+2, . . .  ,Xi+k-1} such that  

{x~, X,+l} u s5-3 = { x ~ , . ,  ~+~r+l, y ~ + ~ , ,  y~-~}. 

From 11., 

Fi(S~_a) N { z i , . . . ,  Z i + k + l  } : { Z i , .  . . , Z i + 2 r + l ,  Y2r+2,..., Y d - 2 ,  X k + i ,  X k + i + l  } .  

Since {x i , . . .  ,xi+2r+l,Xl¢+i} C Fi(S~_3) and xi+2r+2 ~ Fi(S~_3), we apply 12. 

and 2.1 as above and obtain that  

E~(S~_~) n {x~, . . . ,  zn} = { ~ , . . . ,  z~+2~+1,y2~+2,..., y~-2, ~ k + , . . . ,  xk+~+2r+~}. 

We may now assume that  i > 0. As we are describing here the facets with the 

initial vertex xi, it is an easy consequence of 2.2 and 12. tha t  ya-2 # xk+i-1 if 

and only if 

Fi(S~_3) -- [x i , . . . ,  zi+2~+l, Y2~+2,..., Yd-2, x k + i , . . . ,  Xk+i+2r+l]. 
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W i t h  S~-3 = {x~+2,. . .  ,x i+d-2},  we have that  

F i ( S ~ - 3 )  n { x ,  . . ,  ~ + k + i  } = { ~ , .  • •, ~ + ~ - 2 ,  ~k+~, x~+~+l } 

for 0 < i < n - k - 1. Noting tha t  Xi+d-2 ~ Xk+~-I and arguing as above, we 

obta in  tha t  

-~i(s,~-3) = [x~ , . . . ,  x~+d-2, x k + , . . . ,  zk+i+d-~] .  

Again, we may  think of this as the r = m - 1 case. 

B4. Let Sd-3 = {Yl,- . .  ,Yd-3} C {Xn-k+2, . . .  ,xn-1} .  Then  

s d - 1  = {xn-k,x~-k+l} U Sd-~ C { ~ - k , . . . , ~ - i } ,  

and from 9.2, 

Now if k < n, we obtain from 2.2 and 12. tha t  

Fn(Sd-i) = [xn-~,x~-~+i,Yi,...  ,Yd-~,xn] 

if and only if Yd-3 ~£ Xn-1. 

Bb. Apply  B1 with the  reverse vertex array. 

Now, let F E ~-i, 0 < i < n - d + 1, have the vertex array Yo < Yl < • • • < ys. 

If i -- 0 then by 8.2, either {Yl , . . .  ,Yd-1} is a paired subset of { x l , . . .  ,Xk} [type 

B1 or B2] or (YO,Yl,Yd-1} = {xo , x l , x k }  and {Y2,...  ,Yd-2} is a paired subset 

of { x 2 , . . . , x k - 1 }  [type B3 (k < n) or 84  (k = n)]. If  1 < i < n -  k -  1 then 

{Y0,.. .  ,Yd-2} is a paired set and by 14., {Y2,.-. ,Yd-2} C {xi+2, . . .  ,Xi+k-1} 

[type B3]. If  0 < n - k < i < n - d + 1 then 9.2 yields tha t  F is type  B4 or Bb. 

Finally, we note tha t  d - 3 = 2(m - 1) and recall tha t  

Clearly, there are 

i=u + 

2 Z m l 
j = d - 2  j = d - 2  

facets in B1 and Bb. Since each facet in B2 is determined by a n  Sd_  3 C 

{xl,  . ,  xk-2},  there are p(m - 1, k - 2) = (k-,,~-l~ of them. 
"" k " m - - 1 ]  
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Let k = n. Then each facet in B4 is determined by an Sd-3 C {x2 , . . .  , xn -1}  

and there are p(m - 1, n - 2) = (n-m-l~  of them. Thus, in this case, 
k m - - 1 /  

) ( )) I j - m  n - m - 1  = 2  E j - m  
f d - l ( P )  = 2 m - - 1  + m - - 1  m - - 1  

\ j = d - - 2  j : d - - 2  

n - m - 1  . n - m - 1  . 

z r (re:l) 
i = d -  2 - r n  i = m - 1  

Let k < n. Considering B3, each facet in3r°( .T i, 1 _< i _< n - k - l )  is 

determined by an Sd-a C { x 2 , . . . ,  Xk-1}({Xi+2, . . . ,  xi+k-2}),  and there are 

P(m-l'k-2)+(n-k-l)P(m-l'k-3)=(k-mm-l)+(n-k-l)(k-ml2)-i m -  

of them. In B4, each facet is determined by an Sd-s C {x~-k+2, . . .  ,x,~-2} and 

there are p(m - 1, k - 3) = (k~m_T2) of them. Therefore, 

\3=a-2 

. 
16. COROLLARY: Let P be an ordinary d-polytope with the vertex array 

Xo < xl  < . . .  < xn and the characteristic k, d = 2m + 1 > 5. 

16.1 I l k  = n then P is cyclic with the same vertex array. 

16.2 I l k  = d then fd-1 (P) = n + l  and the (d-1)-faces of  P are [Xo, x l , . . . ,  Xd-l~ 

[ X n - d + l ,  . . . , X n - - 1 ,  X n ]  a n d  [ X i _ d ~ - l , .  . . , X i _ l ,  x i q _ l , .  . . , X i + d _ l ]  [ o r  

i = l , . . . , n - 1 .  

Proof." 1. It  is immediate that  if k = n then 5 c = F ° U F* and P is simplicial. 

Theorem B or Lemmas 8.2 and 9.2 now yield that  any d element Gale set of V 

is the set of vertices of a facet of P.  

2. Let k = d. The assertion is trivial if n = d, and 

( : )  (:11) f d _ l ( p ) =  2 m 1 + ( n - d )  = 2 m + 2 + n - d = n + l .  
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Let Fi = [ x i - a + l , . . . , x i - ] ,  x~+l,... ,Xi+d-1] for i = 1 , . . . , n  -- 1, and assume 

that  d < n. 

Prom B1 and B5, we obtain [x0, . . . ,  Xd-1] and [Xn-d+l,..., Xl], respectively. 

B2 yields F~ for odd i = 1 , . . . , d -  2. B3 yields Fi for even i = 2 , . . . , d -  1, and 

i = d , . . . ,  n - 2. Finally, B4 yields Fn-] .  II 

4. R e m a r k s  a n d  examples  

It is clear that  although we can describe ordinary (2m + 1)-polytopes, further 

study is needed to really understand them. For example, 16.2 is a surprising 

result that  hints of something special about ordinary (2m + 1)-polytopes with 

characteristic 2m + 1, m > 2. Also, while the present definition of an ordinary 

d-polytope is a reasonable one because it recognizes the parity of d, it does not 

indicate in any way how to obtain non-cyclic ordinary 2m-polytopes. Is there 

a better definition of ordinary (2m + 1)-polytopes? This relates of course to 

the problem of a second definition of an ordinary d-polytope that  yields cyclic 

(2m + 1)-polytopes and non-trivial 2m-polytopes. 

Next, the difference between the theory of ordinary 3-polytopes and that  of 

those of higher dimension. From [1], we note that if P is an ordinary 3-polytope 

with fo(P) = n + 1 and char P = k then 

[2] + k < _ f 2 ( P ) < n + k - 2 = 2 ( k l l ) + ( n - k ) ( k - 3  ) . _  0 

Thus, P is not combinatorially unique. It is somewhat surprising that  already 

an ordinary 5-polytope with n + 1 vertices and characteristic k is combinatorially 

unique. 

Finally, we refer to [1] for examples of ordinary 3-polytopes. Below, we present 

two examples of higher dimensional ones. In each case, the polytope is d- 

dimensional with the vertex array x0 < xl < . . .  < xn and the characteristic 

k, d = 2m + 1. We specify the polytope by (n, k, d) and denote the facets using 

the subscripts of the xi's. We list the facets via Theorem B. 
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Example 1: (n, k, d) = (7, 6, 5) and f4 = 14. 

BI: [0, 1, 2, 3, 4], [0, 1, 2, 4, 5], [0, 2, 3, 4, 5]; 

B2: [0, 2, 3, 5, 6], [0, 3, 4, 5, 6], [0, 1, 2, 5, 6, 7]; 

e3: [0, 1, 3, 4, 6, 7], [0, 1, 4, 5, 6, 7], [0, 1, 2, 3, 6, 7]; 

e4: [1, 2, 3, 4, 7], [1, 2, 4, 5, 7]; 

B5: [2, 3, 4, 5, 7], [2, 3, 5, 6, 7], [3, 4, 5, 6, 7]. 

Example 2: (n, k, d) = (10, 8, 7) and f6 = 26. 

BI: [0, 1,2,3,4, 

B2: [0,2,3,4, 
[0, 1, 2, 4, 

5,6], [0, 1,2,3,4,6, 7], [0, 1, 2, 4, 5, 6, 7], [0, 2,3,4, 5,6,71; 

5, 7, 8], [0, 2, 3, 5, 6, 7, 8], [0, 3, 4, 5, 6, 7, 8], 
5, 7, 8, 9, 10], [0, 1, 2, 5, 6, 7, 8, 9, 10], [0, 1, 2, 3,4, 7, 8, 9, 10]; 

B3: [0, 1, 3, 4, 5, 6, 8, 9], [0, 1, 3, 4, 6, 7, 8, 9], [0, 1, 4, 5, 6, 7, 8, 9l, 
[0, l,  2, 3, 5, 6, 8, 9, I0], [0, 1,2,3,6, 7,8,9, I0], 
[1,2,4,5,6,7,9, 10], [1,2,3,4,6,7,9, 10], 
[0, 1, 2,3,4,5,8,9,  10], [1,2, 3,4,5,6,9, 10]; 

123 

B4: [2,3,4,5, 

B5: [3, 4, 5, 6, 

6, 7, 10], [2, 3, 4, 5, 7, 8, 10], [2, 3, 5, 6, 7, 8, 10]; 

7,8, 10], [3,4, 5,6,8,9, 10], [3,4,6, 7, 8, 9, 10], [4, 5, 6, 7,8,9, 10]. 
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