ISRAEL JOURNAL OF MATHEMATICS 102 (1997), 101-123

ORDINARY (2m + 1)-POLYTOPES

BY

T. BISZTRICZKY

Department of Mathematics and Statistics, The University of Calgary
Calgary, Canada T2N IN4
e-mail: thisztri@math.ucalgary.ca

ABSTRACT

For each k,m and n such that n > k > 2m + 1 > 5, we present a convex
(2m + 1)-polytope with n + 1 vertices and 2(’“;:") +(n—k) (""”‘“2)

m—1
facets with the property that there is a complete description of each of

the facets based upon a total ordering of the vertices.

Introduction
We introduce a class of convex (2m + 1)-polytopes P, via a total ordering of
the vertices of P, which contains the cyclic (2m + 1)-polytopes and which has
the property that there is a complete description of the facets of each P. These
polytopes, which we call ordinary, have been defined for m = 1 in [1] and we
present them here for m > 1. In fact, we define an ordinary d-polytope for any
d > 3 but show that the polytope is not cyclic only if d = 2m + 1 (Theorem A).
As guide-posts, we indicate the central concepts and results of our theory.
Let P be a convex d-polytope in E¢, d = 2m + 1 > 5, with a totally ordered
set of vertices, say, 2o < T3 < --+ < Z,. Then P is ordinary if each of its facets
satisfies a global condition (the necessary part of Gale’s Evenness Condition) and
a local one (a specific relation among the vertices of a facet). Then there exist
integers k and ! (see Lemma 4 for the existence of &) such that d < &, ! < n,
conv{zo, z;} is an edge of P if and only if 1 < ¢ < k, and conv{zp_;,z,} is an
edge of P if and only if 1 < ¢ < [I. In fact, k is equal to ! (Corollary 13) and we
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call it the characteristic of P. Given & and !, we list the facets of P containing zg
or z, in Lemmas 8 and 9, and the other facets of P in Lemma 11. In Theorem
B and its Corollary, we describe completely these facets and show that if k is the
characteristic of P then

pnP=2(* ")+ -m(F 717,

m-—1

and that if k£ = n then P is cyclic.

Finally, we note that ordinary 3-polytopes were inspired by the idea of choos-
ing, as vertices, points on a convex ordinary space curve in E®. Unfortunately,
there is as yet no definition of a convex ordinary space curve in E? for d > 3.
However, certain types of curves in E4 (for example, curves of order d) have
properties that are independent of d, as long as the parity of d is the same. Thus
our expectation, in generalizing the definition of an ordinary 3-polytope, is that
there is a new class of d-polytopes only if d = 2m + 1. As this is the case, our
approach seems to be a reasonable one.

1. Definitions

Let Y be a set of points in E4, d > 3. Then conv Y is the convex hull of Y and
if Y = {y1,...,ys} is finite, we set

[¥1,---,¥s) = conv{yy,...,ys}

Thus, [y1,¥2] is the closed segment with end points y; and y,.

Let V = {zg,1,...,%,} be a totally ordered set of n + 1 points in E¢ with
z; < z; if and only if i < j. We say that z; and z;,, are successive points, and
if z; < x; < z), then z; separates z; and z; or z; is between z; and zj.

Let Y C V. Then Y is connected (in V) if z; < z; < ) and {z;,zx} C Y
imply that z; € Y. If Y is not connected then clearly it can be written uniquely
as the union of maximal connected subsets, which we call components of Y.
A component X of Y is even or odd according to the parity of |X| = card X.
Next, Y is a Gale set (in V) if any two points of V\Y are separated by an even
number of points of Y. Finally, Y is a paired set if it is the union of mutually
disjoint subsets {z;,z;4+1}.

We note that V', @ and all paired subsets of V are Gale sets. Conversely, let
Y C V be a Gale set. f Y N {z9,z,} = 0 then Y is a paired set. Thus if Y is
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not connected then Y has at most two odd components, each of which contains

Tg OF Zp-

We acknowledge that a connected set is an adaptation of Shephard’s contiguous
set in [5], and that Gale sets stem from the article [2] by Gale.

Let 7 and s be integers such that 0 < 2r < s, and let Y C V be a connected
set with |Y| = s. Let p(r, s) be the number of paired subsets X of Y such that
| X| = 2r; that is, X is the union of r mutually disjoint pairs.

s—1

Since p(1,s) = s — 1 = (°7'), we assume that 7 > 2 and that p(r — 1,s) =
(°*-7*1). Noting that p(r,s) = p(r,s — 1) +p(r — 1,5 — 2),

r—1

s—2(r—1)

p(ris) = Y p(r—1s-i)

=2

—3—2'r+2 s—i—r+1 B ril ]
- . r—1 _j=3—1'—1 r—1

i

cf. formula 1.52 in [3]. We shall use p(r, s) to calculate the number of facets of

an ordinary polytope.

Let P C E® be a (convex) d-polytope. For —1 < i < d, let F;(P) denote the
set of i-faces of P and f;(P) = |F;(P)|- When there is no danger of confusion, we
set F; = Fi(P) and F = Fy4_;. Let V = Fo(P) = {z0,21,...,Zn}, n > d. We
set £; < z; if and only ifi < j, and call zg < 7, < -+ < z, a vertex array of P.
If we reverse the ordering, we call ¢, < z,_1 < --- < zg a reverse vertex array
of P. Let G € F;(P), 1 <i<d, such that GNV = {yo,v1,...,ys} (each y; is
some ;) and yo < y; < -+ < Y, is the ordering induced by zo < z1 < -+ < Zp.
We call yo < y1 < -+ < y, an (induced) vertex array of G, and set y; = yo for
j<Oand y; =y, for j >s.

We recall from [2] and [4] that a d-polytope P with the vertex array zo < z; <
-+ <z, is cyclic if P is simplicial and satisfies Gale’s Evenness Condition: A
d element subset Y of V determines a facet of P if and only if Y is a Gale set.
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Furthermore, if P is cyclic then p(r, s) = (S:T) readily yields that

_ntl <n+1—m) for d = 2m,
n+l—-m m
fa-1(P) =
2(n—m> ford=2m+1.
m

Let P be a d-polytope with the vertex array zo < 1 < - < zg,n > d > 3.
Then P is ordinary if for each facet F of P,
(01) FNYV is a Gale set, and
(02) ifyo < y1 < --- < Y, is the (induced) vertex array of F then the (d—2)-faces
of F are [yo,y1,---,Yd—2), [Ys~d+2,- - > ¥s~1,Ys] a0d [Yiodra, -, Yim1, Yit1,
ey Yigd—2) fori=1,... ;s -1

We emphasize the convention that in the description of faces as in (02), the
terms y; are to be ignored if j <0 or j > s.

Since cyclic d-polytopes are simplicial, they are clearly ordinary. Next, and
this is the reason why fo(P) = n+ 1 and fo(F) = s + 1, if P is ordinary with
the vertex array o < z; < -+ < p, then it is ordinary with the reverse vertex
array Ty < Tp-1 < -+ < Io.

Finally, if P is an ordinary 3-polytope and F' € F,(P) has the vertex array
Yo < ¥1 < --- < ys then F is a polygon with the edges [yo,¥1], [¥s—1,Ys] and
[yj,yj+2] for j =0,...,5—2. For a description of ordinary 3-polytopes, we refer
to [1]. As we shall see, there are differences between the theories of ordinary
3-polytopes and ordinary d-polytopes, d > 4.

2. Preliminaries

Henceforth, we assume that P is an ordinary d-polytope with the vertex array
To < Ty <+ < Tp, d > 4. We list some of the consequences of our definition,
and note that Lemmas 4, 8 and 9, and Theorem A are particularly significant.

1. LEMMA: Let F' € F with the vertex array yo < y1 < --- < Ys, and let
G € F4_.o with the vertex array z; < 29 < -+- < 2.
1.1 fg2(F)=s+1 and f(G) < 2d — 4.
1.2 The vertices y;, Yi+1,- - - , Yi+d—1 are affinely independent, i =0,...,8—d+1.
1.3 If s > d then [yo, 1, --,¥a-2), W0,¥2,---,¥d—1]; [Ws—dt1,--.Ys—2,¥s] and
[ys—d+25- - Ys—1,¥s) are the only (d — 2)-faces of F that are simplices.
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14 If G C F then |FN{z; |21 <z; < z}| < t+ 1, with equality for t > d;
furthermore, ift < 2d — 5 then yo = z; or ys = 2.

1.5 [yo,y;] € F1 ifand only if 1 < j < d —1 if and only if [y,—;,ys] € F1.

1.6 If s > d then for j = 0,...,s — d, [y;,¥j+1,Yj+d—1,Yj+d] € F2 and
[Y5: Yj+a] & F1-

Proof: The first four observations readily follow from (02).
5. If 1 < j < d—1 then 1.3 yields that [yp,y;] is an edge of P. Let d < j < s
and G € Fy_(F) such that {yo,y;} C G. Clearly,

G = Wi—dt2,- - Vi1, Yit 1 - - - » Yitd—2]

for some i such that i —d+2<0andd < j <i+d—2. Hence, 2 <i<d—2and
it follows that y; € G. But then [yo, y;] is not the intersection of (d — 2)-faces of
F, and it is not an edge of P.
By the reverse vertex array, we obtain the second part of 1.5.
6. Let 0 < j < s—d. Since d > 4, we have that
j+d—2
() Wimds2s- Ui 1, Yitts - > Yidd—2] = W5, Uit Yjbd—1, Yjra]
i=j+2
is a face of P. It is now easy to check that if {y;, 4,44} C G € Fu_o(F)
then {y;11,Yj+d-1} C G. Thus, [y;,y;+d] ¢ F1 and from this it follows that
(Y, Yi+1, Yird-1,Yj+a) € oo

2. LEMMA: Let F € F with the vertex array yop < -+ < Yr < Yrq1 < +-+ <

Y1 < ¥ <+ < Yo, {Yrs¥r1} = {25, 2541} and {ys—1, 9t} = {21, 71}
21 fr>lands>r+d—1theny,_ =z;_1.
22 Ift<s—1andd—-1<tthen ys11 = Ti41.

Proof: 1. Letr>1ands>r+d—-1. Then2<r+1<s5-d+2<s-—2and

G= [yr—d+3, o YryYrg2y . ,I‘/r+d—1] € fd—2'

Let F' € F with the vertex array zg < z; < --+ < 2, such that F'NF =G. Then
F' n{zj,zj+1} = {z;}, ; > zo and (01) imply that z;_; and z; are successive
vertices of F'. Clearly

G = [Zi—a42, -1 2i-1y Zi41, - - » Zi+d—2]
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for some 1 < i < u— 1. Since [{¥rt2,-- - Yr+d—1} = d — 2, it follows that
{Yr-1,¥r} C {zi-d+2,...,%i-1}. Hence, y,_1 and y, = z; are successive vertices
of F’, and y,_1 = ;1.

2. Letd—1<t<s-—1. Then

G = [Yt—dt1s-- -, Ye2:Ytr -+ Ytrd—1] € Faz

. ! . . 1
and, with F' defined as above, z; and ;4 are successive vertices of . Now,

{¥t—dt+1, .- Y2} = d — 2 yields {ye,ye41} C {2i41,...,%i4d-2} and y11 =
Tit1- 1

Let VO = {z; € Vl{xo,xi] € F1} and F° = {FE}'Imo € F}.

3. LEMMA: Let zo # 2; € F € F°. Then |[FNV°®| =d -1, and z; € V° if and
only if |F N {xzo,...,zi}| < d.

Proof: Apply 1.5. |
4. LEMMA: There is an integer k such that d < k <n and V° = {z1,...,7x}.

Proof: Let k < n be the largest integer such that z; € V°. Clearly, k > d. We
show that ¢ > 2 and z; € V° imply that z;_, € V°.

Let 7 = {F € F | {xo,z;} C F}. Then the edge [zo,z;] is the intersection
of all the F € F', and by 3., |F N {xo,...,z;}| < d for each F € F'. Thus, if
zi_y € F € F then |FN{xq,...,zi_1}| <d and z;_; € V°.

[f2<i<n-—1thenforany F € F , FN{zi 1,24} # 0 by (01). Since there
must be an F € F such that ziy1 ¢ F, we have that z;_; € F.

If i = n then each F € F is a (d—1)-simplex by 3. Let r be the largest integer
such that r < n and there is an F, € F with z, € F,. Let Yo <y1 <+ < Yd-1
be the vertex array of F,. Then yy = zq, Yd—2 = Zr, Yi—1 = T, and

G = [yOa" . ayd—4,xﬁ$n] € ]:d—Z-

Let F' € F such that F' NF, = G. If 1,41 # T, then z,_; € F' N F, by (01).
Since z,_; € F, implies x,_; = yg4_3, and z,_; € G implies T,—1 = Y4—a, it

follows that z,+1 = ¢, and =, = Tp_1. [ |
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5. LEMMA: Let VO = {zy,...,z+}. Let F € F° with the vertex array zo < y; <
o<y, and T4 < Yg-1-

5.1 If d = 2m then either z;; = yg—1 and {y1,...,Ya—2} is a paired sub-
set of {z1,...,Zk-1} or &1 = y1 and {y2,...,Y4-1} is a paired subset of
{z2y.. ., zk}

5.2 Ifd = 2m+1 then either {y1,...,y4—1} is a paired subset of {z1,...,zx} or
Ty = Y1, Tk = Ya—1 and {y2,...,ya-2} is a paired subset of {z3,...,Tx_1}.

Proof: 'We note that by 1.5 and 4., y4—1 < 2. Next, yg—1 > x4 implies that
{Zo,y1,---,Ya—1} is not connected. Thus, the two assertions in both 5.1 and 5.2
are mutually exclusive.

1. Let d = 2m. If {zo,¥1,..-,Ya—1} is paired then z; = y; and {yz,..., Y41}
is paired. If {zo,¥1,...,Yd—1} is not paired then because it is not connected,
it has exactly two odd components. One component contains zo and the other
contains yg.-1. By (01), the latter is not possible if y4_1 < zx. Hence, y4_1 = &
and {y1,...,yq—2} is paired.

2. Let d = 2m + 1. Since {zg,%1,...,Y4—1} is not connected and contains an
odd number of elements, it has exactly one odd component which contains either
To or y4_1. In case of the former, {yi,...,y4—1} is paired. In case of the latter,

we have z1 = y1, {y2,-.-,Ya—2} is paired and, as above, yg_1 = Tk. ]

We note that while the assertions in 5 are somewhat repetitive, they make it
easier to list the facets in F°. Our goal now is to list the d element subsets of
VOU {zo} that by 1.2 and 3., determine the facets in F°.

6. LEMMA: Let V° = {xy,...,zx}. For each integer r such thatd—1 <r <k,
there is an F € F° such that z, € F and |F N {zo,...,z,}| = d; that is, z, €
FnVve C {zy,...,zr}.

Proof: Since the assertion is true for » = k, we show that if it is true for r,
d<r <k, thenitistrueforr—1. Letd<r <kandlet F € F9 with the vertex
array £o < y1 < -+- < Ys, Tr = Yd-1-

If r = nthen F = {20, %1, . . . , Yd—2, Z] is a (d—1)-simplex by 3. From the proof
of 4., we may assume that z,,_; = yq_2. We note that G = [z, Y1, - .,Yd—3, Tn—1]
€ F4_2 and so, there is an F' € Fsuchthat F NF =G. Then z, ¢ F . FeF
and T,y € F NVOC {z1,...,Tn_1}.
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Let r <n—1. Since r > d and |F N {zy,...,2,}| = d -1, it follows that there
is an integer j such that 2 < j <r and

Fn{z;_1,...,z;} ={zj,...,2,}.

If 2,41 ¢ F then z;_; ¢ F and (01) yield that {z;,...,z,} is an even compo-
nent of FNV, j <r—1and z,_; = yg_2- By (02),

G = [z0,Y1,- -+, Yd-3 zr_1] € Fq-z.

Let F' € Fsuchthat FNF=G. Then F € 7, 2, ¢ F, {zj,...,zr1} C F
and by 1.4, IF' N {xo,...,xr_l}] < d. Since |{zj,...,2-—1}| is odd, it follows

that z;_; € F' and ‘F' n {$0,---,37r—1}| =d.
If £, € F then .41 ¢ V° and 4. imply that 7 = k. Since

G= [xo,yz,---,yd—ll = [Eo,y2,-~,yd—2,$k] € Fa_a,

there is an F' € F such that N F = G. We note that F € FO xpi ¢ F and
z. € FNVO C {z1,...,z1} by 4. We argue now as in the preceding paragraph
to verify the assertion for k — 1. ]

7. LEMMA: Let VO = {z1,...,2x},d<k<n. Letd—1<r<kand F € F°
such that z, € F and |F N {xo,...,z.}| =d. Let {z;,z;41} C FNV for some
1<3<r—-2.

7.1 1fj > 1and z;_; ¢ F then there is an F € F° such that
FOV = (FAVO\(e5)) U faioa).
7.2 If j <r—2and z;,2 ¢ F then there is an F' € F° such that
FOVO = (FAVONz;) U {e1a).

Proof: Let yo < y1 < -+ < ys be the vertex array of F. Then zo = yo,
z, =yg—1 and FNV® ={y,...,y4-1}. For2<i<d -2,

Gi =1{yo,- - ¥i-1,¥it1>-- - Yitd—2] € Fa-2

and there is an F; € F such that F;, N F = G;. We note that F; € FO and
(FNVO\{s:} C F;nV°.
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Ifj > 1and z;_1 ¢ F then with {z;,2;41} = {yi—1,%}, (01) yields that
zj-1 € Fi. If j <r—2and zj49 ¢ F then with {z;,2;41} = {yi,yit1}, (01)
yields that z;,2 € F;. Now by 3. and 4, F = F, in each case. |

In view of the preceding lemmas, we can now list all the facets in 7°. Hence-

forth, we let S; denote a paired set of vertices of cardinality j > 0, and set

So=0.
8. LEMMA: Let VO = {z,,...,zx}.
8.1 If d = 2m then
FO ={Fp,1(S4=2) |Sa-2 C {z2,...,7x}}
U{F§(Sa-2)| Sa-2 C {21, zh-1})
where
F5,1(Sq—2) N {zo,...,zk} = {z0, 21} U Sq_2
and
FE(Sa—2) N{zo,..., 2k} = {20} U Sa—2 U {zx }.
8.2 Ifd=2m+ 1 then
FO ={Fo(S4-1)|84-1 C {z1,...,7x}}
U{F§1(Sa=3)| Sa-3 C {z2,...,zk-1}}
where
Fo(Sa-1)N{zo,...,zk} = {xo} U S4-1
and
F&I(Sd_3) N{zo,...,Zx} = {Zo,T1} U Sa—3 U {zx}.

We note that 8. states simply that if Q) is the vertex figure of P at zy deter-
mined by a hyperplane H and if {z;} = H N [zo,z;] fori =1,...,k then Q is a
cyclic (d — 1)-polytope with the vertex array 2o < 21 < --+ < zg. Also, if d =2m
then

|79 = 2p(m — 1,k — 1) = z(k“m),

m—1
and if d = 2m 4+ 1 then

|7 =p(m, k) +p(m—-1,k-2)

-() ) R A7)
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Next, let
V* ={z; € V|[zn-i,za] € F1} and F* = {F € F|z, € F}.

By reversing the vertex array, we obtain that there is an [l such that d <1 < n
and V* = {zn_i,...,Zn_1}, and the analogues of 3, 5, 6 and 7.

9. LEMMA: Let V* = {zn_,...,Zn_1}
9.1 Ifd = 2m then

F* ={Fn—1,n(sd—2) |Sd—2 C {zn—la e axn—Z}}
U{F2 "} (Su=2)| Su-2 C {ZTn-t41,--+, Tn-1}}

where

Fn—l,n(sd—Z) N {:l"n-—[’ ce ,.’L‘n} = Sd—2 U {zn—l,zn}

and
F:—'l(sd_g) N {.’L‘n_l, - ,.’L‘n} = {zn—l} U Sg_U {a:n}

9.2 Ifd=2m+ 1 then

F* ={Fo(Sa-1)1Sa-1 C{Zn—t,--,Zn-1}}
U{F77] o (Sd-3)| Sa-3 C {@n—t+1,- -, Tn_2}}

where
Fo(Sa—1) N {zn-ts...,Zn} = Sa—1 U {zp}

and
F::ll,n(sd—Ii) N {xn—la e amn} = {zn—l} U Sa3U{Zn-1,Za}-

We are now ready to exclude the case d = 2m from our considerations.

THEOREM A: Let P be an ordinary d-polytope with the vertex array o < 1 <
-+ < Zp, d=2m > 4. Then P is cyclic.

Proof:

(i) [zo,zn] € Fi:
We suppose that V° = {z1,...,zx}, d < k < n, and seek a contradiction.
By 8.1, there is an F € F° with the vertex array yo < y; < --- < ys such



Vol. 102, 1997 ORDINARY (2m + 1)-POLYTOPES 111

that {yo,...,ya-1} = {Z0,%1,...,%a-2,Zx}. Sinced < k < n, zx_; ¢ F and
zr4+1 € F. By (02),

G = [yo,y2,---,Yd-1] = [To, %2, ..., Td-2, Tk] € Fa-2.

Let F € F such that F'NF = G. Then F' N{z1,zk41} =0and z_, € F. By
14,

F n{xg,...,z¢} = {20, 22, ..., Td—2, Th—1, Tk }-
Hence, z; and x4, are separated by an odd number d — 1 of vertices of F a

contradiction. Thus, [zg,z,] € Frandk=n=1

(ii) P 1S SIMPLICAL:
We suppose that
F ={FeF|fo(F)>d+1}
is not empty and seek a contradiction.
Since k =n =1, FFn(FPUF*) =0 by 3. Let F € F' with the vertex array
Yo < Y1 < -+ < yYs. Then F N {xp,z,} = 0 implies that {yg,y1,...,¥ys} is a
paired set and s > d+ 1. Let

{yo, Y1,Yds yd+1} = {-’Ei, Tit1, Ty $u+1}

for some suitable z and v. We note that ¢ > 1. Without loss of generality, we
may assume that if F € F then FNV C {zi,...,Zn_1}.
We observe that

G= [yanlay3)"',yd] € fd_z
by (02), and there is an F' € F such that F' N F = G. Since fo(G) = d,

Flﬂ{leyOSszyd} =d+1

by 1.4. Since F'n {Zi~1,Zy+1} = 0 and d + 1 is odd, the set above is not paired,;
a contradiction.

(iii) FOR EACH Sq C {z1,...,Zn—1}, THERE IS AN F' € F SUCH THAT FNV =
Sa:

Let {yo,...,94—1} C V be a paired set with 25 < yp < --- < yg—1 < Z5. Then
{yo0,v1} = {zr,ZTr41} for some r > 1, and y, = z; for some t > r + 2. Since
Sda—2={y2,---,Yd-1} C {Tr42,-.-,Zn—1}, it follows from 8.1 and k = n that

[1?0,931,1/2, sen 1yd—l] (S F.
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Then G = {z1,¥2,- - -,Ya—1] € Fa—2 by (02). Since y2 = z; > z,,2 > 3 and P is
simplicial, it is clear that

[zla‘T?vyZa ] )yd—l}
is the other facet of P containing G. Reiteration of this argument yields that
[xia Tit1,Y2,--- 7yd—l] eF
fori=1,...,t— 2, and hence for i = r.

(iv) P1s cycLic: By 8., 9., the preceding and (01), we have that P is simplicial

and satisfies Gale’s Evenness Condition. [ |

3. Ordinary (2m + 1)-polytopes

In this section, we assume that d = 2m + 1 > 5. From 8.2 and 9.2, we have the
facets of P passing through x4 or z,. We proceed now with the task of finding
the remaining facets of P.

10. LEMMA: Let VO ={z,,...,7},d<k<n—-2and1<i<n—-k—1. Let
j be an odd integer, 1 < j <d—2, S4_j_2 C {Zit2,...,Tiyk—j—1} and F € F
such that

FO{zi_1,...,Tipr} = {@i-1, 2} U Sa—j2 U {Zigk—jy .-, Tigk }-
Then there is an F' € F such that

r
F 0 {@i,. ., Tigkt1} = {3, Tig1} U Sa—j—2 U{Zitk—jt1, -+, Tiskh1 }-

Proof: Let yo < y1 < -+ < ys be the vertex array of F. Then

Fn{zic1, ..., Civk} = {Yr—2,- - Yr—2+d}

for some 2 < r < s—d+2. We note that {yr—2,¥r—1} = {zi-1,2;} and yr > zi42.
Hence, s <r+d—2by2.1; that is, s=r+d —2 and

Fo{zioy, ..., @ipk} = {Ys=a)-- -, ¥s}-

From 1.6, [zi—1, Zitk] = [Ys—d, Ys] ¢ F1. Since

G = [Ys—j—dt2, - Ys—j—1,Ys—jt1y -+ » Ys—j+d—~2] € Fa-2
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for 1 <j<d-2and z;4x_; = ys—;, we have that

G= [ys—j-d+2, s Ys—j—1Titk—j+1y- - ,$i+k]-
Let F' € F such that FNF = Q. Then Tigh—j ¢ F', t+k < n and
|{$i+k—j+1a ce ,.’L‘H_k}l :_] (Odd) yleld that Titk+1 € F/.
If 5 =1 then Ys—j—dt2 = Ys—d+l = Yr—1 = &5 and z;_3 ¢ G. Thus, z;_, ¢ F’
and z;41 € F'. Let j = 3. Then ys—j_q+2 < Ys—g = Ti—1 and

Gn {xi—la s ,mn} = {-’Ei—lami} U Sd—j——2 U {$i+k—j+1, cee ,$i+k}-

Since [z;—1, Zi+k] € F1, it follows from 1.4 and 1.5 that there is exactly one vertex
zof F' suchthat z ¢ Gand z;_; <z < T4k Then zippj ¢ F' and (01) clearly
yield that ¢ = z;4,. |

11. LEMMA: Let VO = {zy,...,2x},d<k<n-land0<i<n—-k—1. For
each Sy_3 C {zi+2,...,Titk—1}, there is a facet Fi(Sq_3) of P such that

Fi(Sq-3) N {zi, .., ziget1} = {2i, Tit1} U Sa—3 U {Titk, Tivir1}-

Proof: We note that by 8.2, the assertion is true for ¢ = 0. (Since k < n,
Tpt1 € F&I(Sd_g).) Let 1 <¢<n-—k—1 and assume that the assertion is true
for i — 1.

Let Sq_3 C {Zit2,-. s Tith-1} I Tiyk—1 ¢ Sq—3 then F;_1(Sq—3) exists by
the induction hypothesis. Since

Fi 1(Sa—s)N{zi1,. -, ik} = {2iz1, i } U Sg3 U{Zith—1, Tivk }

the existence of F;(Sy.3) follows from 10. with 7 = 1. Let z;44—1 € Sq—3. Since
Sq4—3 is paired, there is a largest odd integer j such that 3 < j < d - 2 and
Titk—j ¢ Sd_3. Then

Sa—3=Sa—j—2U{Zisk—ji1,- - Tisk-1}
with
Sq—j—2 = S8a—3N{Tit2,- -, Tivk—j-1},
and
!
S =84_j2U{Tiyk—js-- -, Titk—2}

is a paired set of cardinality d — 3. Now, Fi_l(S') exists by induction, and
F;(Sq-3) exists by 10. ]
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12. COROLLARY: Let VO = {z;,..., 2%}, d <k <n—1. Then
[mi,xi+1,z,~+k,xi+k+1] €Fy, fori=0,....,n—k—-1.

Proof: Let 0 < i <n—k—-1, Si_3 C {Tiy2,..-,Titk-1} and yp < y1 <
.-+ < ys be the vertex array of Fi(Sq_3). Then F;(S4_3) N {zi,...,Titkt1} =
{¥j,- .. Yj4a} for some 0 < j < s—d, and

(T4, Tig1, Tighr Tivkr1] = (U5, Vi1, Yjrd—1,Yj+d) € F2

by 1.6. |

13. COROLLARY: Let VO = {zy,... 2}, d < k <n. Then

V' ={Zp_ky- -, Zn-1}

Proof: As we have already noted, V* = {zp_i,...,2n—1} for some d <[ < n.
If k = n then [zo,z,]) € F1,and n = L.

Let k < n—1 and consider Sg—3 = {Zn_g42,..-,Tn-2} C {Cn-k+1s---,Tn-2}
By 11., Fj,_x—1(S4—3) exists and

Fn—k—l(sd—3) n {-'L'n—k—ly L. 7$n} = {-Tn—k——lyzn—k} U Sd—S ) {-’En—-la xn}-

By 1.5, [tn—k,Zn] € F1. Thusn —1 < n—k and k <. Now by reversing the

vertex array, [ < k. |

Since |V°| = |V*| = k for some d < k < n, we call k¥ the characteristic of P
and write k& = char P.
Fori=0,...,n—d+1, let

Fi={FeF|z,c FNV C{zi,...,zn}}.
Since |[FNV| > d for any F € F, we have that F = U?;Odﬂ F*. Finally, let
.7:— = {F‘i(sd_:;) l Sd_3 C {(EH.Q,... ,:EH.k_.l} and i = 0,... , N — k— 1}

when k < n — 1, and set F = 0 otherwise.
As noted in the introduction, Lemma 11 will yield all the facets of P not

containing zg or . This next Lemma will enable us to prove it.



Vol. 102, 1997 ORDINARY (2m + 1)-POLYTOPES 115

14. LEMMA: Let k = char P, F € F with the vertex array yo < y; < --- < y,
and {yo,y1} = {zi, Tis1}. Then ya_3 < Tiyk—2.

Proof: If i =0 then y4_; < zx by 8.2, and the assertion follows. Let ¢ > 1 and
assume that if F' € F with the vertex array zp < 23 < --- < 2z and {zp, 21} =
{Zi—1,z:} then z5_3 < zi g3

Since yo # 2o and F' NV is a Gale set, we have that {yo,...,y4—2} is a paired
set and either yg_1 = z, or s > d and {yg4—1, ¥4} is a paired set.

If y4—1 = z, then F € F*. Now 9.2 implies that Sq_1 = {z;, Zi+1,Y0,-- -, Ya—2}
C{Zn-ky.--,Zn-1} and F = F,(S4-1). Hence, ,—x < z; and y4-3 < Tp_2 =
T(n—k)+(k—-2) < Tivk—2. Let s > d and, say,

{yd—s’yd—z,yd—hyd} = {@‘j,xjﬂ,zz, $z+1}-
We note that
G =[y0,¥2,-.-,¥d-1] = [Zir¥2, .. -, Yd—2,%1] € Fy—sa.

Let F' € F with the vertex array wg < w < - -+ < w, such that FnF=¢G.
Since F' N {Zit1,zi41} = 0, we have that {z;_q1,z;-1} C F'. Then fo(G') =
d—1<2d-5 and 1.4 yield that z; = y4—1 = w,, and so z;_; = w,—3. From
fo(G'Y=d—1 and 1.3,

either G = [Wr—dt2,-..,wp] or G = [Wr—dg1y-- - s Wr—2, Wr].

In case of the former, y; and yg are separated by the d — 2 (odd) vertices
Y2,..-,Yd—1 of F'. Hence,

(Y0, Y25 -y Ya—1] = [Wr—dp1, - - o, Wr_z, wy]
and
{wr—g, ..., wp} = {Zi_1,Zi, Y2, - . -, Ya—2, T1—1, Tt}
Accordingly, 3
G = [Wr—dy- -+, Wr—3, Wpr—1, W]
= [Ti_1, %3, Y2, -+ Yd—3,T1-1,%1) € Fy—2.

Let F' € F with the vertex array 2p < 21 < --- < 2; such that FnF =aG.
Since fo(G) = d < 2d — 5, it follows from 1.4 that there is exactly one vertex z
of F such that z ¢ G and 7,1 < z< =, and zp = z;_; or z; = x;. Since

{l‘i—l, Tiy Y2, --,Yd—4, -"31—1,1‘1}
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is a paired set, £; = y4—_3 and ;41 = Y4-2 ¢ ﬁ’, it follows that z;_; € F and
i<z 1zTj_1.

If zo = z;_y then {z;_1, %1} = {24-1,24}. Thus z < z;_; implies that z; =
Yd—3 = Z4—2, and zj_1 = z4-3. By the induction, z;_; < z;4x_3 and so z; <

Titk—2-
Let 2, = z;. Then

{mi—l,iﬂi} = {Zt—d,zt—d+1} and {$j~1,ivj,$z—1} = {Zt—s,zt-2,2t~1}-

We note that
é = [Zu_d+2, sy By—1r%utly - zu+d—2]
for some t—d+2 < u < t—3. Now u < t-3 implies that u—d+2 < t—d. Therefore

Zy—d4+2 < 2z—g and our convention yield that z,_4 = 2zp. Since 20 = z;_1,

Yd—3 = j < Tizr—2 from above. ]

15. LEMMA: Let P be an ordinary d-polytope with the vertex array
To < 11 < -++ < T, and the characteristick, d =2m +1 > 5. Then
F=FUFuFr
Proof: Let F € F with the vertex array yp < y3 < --- < ys. We may assume
that g < yo. Then
52—1 ={Y0,-- -, Ya~2}

is a paired set with, say, {y0,v1} = {z:, i1} and {y4—3,ya—2} = {zj,zj41}. By
14., j < i+ k — 2; that is,

Sg—l - {z‘i) [ :$i+k—1} N {"L‘(j—k)+2a v ,J)j+1}.
Then
Sé—?: = {y01 cee ayd—4} C {-'L'(j_k)_:,q, . ,xj_l}
and
53_3 ={y2,- -1 Ya—2} C {Tita,. - ) Titk—1}-

We note that ;41 = ya—2 < -1 and G = [yo, ..., Ya—2] € Fa-2.
Ifi>n—kthen S_;, C {Zn—k,...,Zn-1} and 9.2 imply that G C F,,(S3_,)-
Ifi <n—k—1then S2_; C {zi42,---,Titk—1} and 11. yield that G C F;(S3_3).
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If j < k—1then S_, C {z1,...,2x} and 8.2 imply that G C Fp(S_,). If
§ >k then S§_3 C {x(j—k)+2:--+» T(j—k)+k-1}, 0 < j—k <n—k—2 and 11.
yield that G C Fj_(S]_5).

Since G is the intersection of exactly two facets of P, it follows that F € FuU F*.

We can now list all the facets of P and it remains only to describe them in

terms of their vertices. To that end, we use the decomposition

n—d+1

F={J .
1=0

THEOREM B: Let P be an ordinary d-polytope with the vertex array
29 < z1 < --- < z,, and the characteristick, d =2m +1 > 5. Then

far(P) :z(’“;nm> +(n_k)(k—m_z>

m-—1

and, with {yi+1,...,yi+;} denoting a paired set of cardinality j, the following
are the facets of P.
Bl Forj=d—-2,...,k—2and {y,...,Ya-3} C {z1,...,2j-1},

[$07y1)"' 5yd—3;zj,$j+1].
B2. Forr=0,...,m—2 and {y2r+la- .. ,yd_3} C {$2r+2,. .. ,xk_z},

[370, vy T2 Y2r 1y e 0 s Yd—35 Th—1y -« - 7$k+2r}

and

[Zoy .-, d—3, Th—1, .-+, Thtd—3]-
B3. Fori=0,...,.n—k—-1,r=0,...,m-2,
{var+2,- - ¥a—2} C {Tivar43,-- - Tivk—1}
and yq— # Thti—y for i >0,
[iy s Tit2r a1, Yzr 42y -+ -y Yd=2, Thoi - + - » Thopi2r 1)

and

[Ti) -+ Titda2, Thotis - - - » Thtitd—2)-



118 T. BISZTRICZKY Isr. J. Math.
B4. For {yl, - ,yd..3} C {:L'n—k+2, e ,IIIn_l} and, yqg_3 # tp—1 ifk <mn,
[wn—k’ Tn—k+1,Y15---,Yd-3, 157,,].

B5. Forj=d-2,....,k—2and {y1,...,¥4-3} C {Tn—jt1r--+,Tn-1},

[xn—j—lyz'n—j1y1) P ayd—3)mn]-
Proof Bl: Letd—-2<j<k-—2and Sy_3={y1,...,%a-3} C {z1,...,%j-1}
Set
Sq—1 = Sq—3U{z;,zj41} and S_3 = Sg_1\{y1, %2}

From S3_; C {.’L‘l,. .. ,Il,‘k_l} and 8.2,

Fo(Sa-1) N {zo, ..., zk} = {20} U Sa—1 = {z0, %1, ., Yd—3,%j, Tj41}.

Let zo < y1 < --- < ys be the vertex array of F5(S4—1). Then y4_1 = zj4+1, and
we need to show that s = d — 1. By 3., we may assume that k¥ < n. Since 2.1
(with = 1) implies that if y; # z; then s < 14+ d— 1, we may assume also that
y1 = z1. Then y, = x5 and S_5 C {z3,...,2x}. If k <n — 1 then from 11.,

Fi(S3_3)n{z1,- -, zxq2} = {71, 22}US]_3U{Tky1,Th42} = Sa—1U{Tk+1, T42}-

Let z0 < z1 < -+ < 2 be the vertex array of Fy(S;_5). We recall that
[0, 1, Tk, k1] € F2 by 12. Therefore, z ¢ F1(S)_;) implies that zo ¢
Fi(S;_3), and {z,...,2a—2} = S4—1. Since

G= [ZOa .- 'vzd~2] = [ylayZa R ayd—3azj7zj+l]

is a (d — 2)-face of P such that G C Fy(S4-1), fo(G) =d—1 and 2o ¢ G, it
follows from 1.3 that y, € G; that is, yg_1 = ;41 = Ys-

If Kk =n — 1 then we need only that z, ¢ Fy(S4—1). This is immediate since
[0, 1, Zn-1,%n] € F2, {Z0, 21} C Fo(S4-1) and zn—1 ¢ Fo(Sa-1)-

B2. Let 0 < r <m—2, {yzrt1,...,Yd-3} C {Zary2,...,Zk—2} and §§_, C
{z1,...,zk} such that

{xo} USgy = {zo, . s T2r, Y2ra1, - -+ 1 Yd—3, Th1, Th -

From 8.2,
FO(SQ_I) N {.”L‘o, e ,.Tk} = {.’130} U S;—l'
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We may assume that k < n. Then {xo,zr} C Fo(S]_;) and 12. yield that for
j=1,....n—k—1,

z; € Fo(S7_,) if and only if x4k € Fo(S7_;).
Thus, {zo, ..., Z2-} C Fo(S]_;) implies that
Fo(Sg_l) n {wo, e ,$k+2r} = {ito, sy T2y Y2141y - -+ 3 Yd—3, Th—15 - -+ ,$k+2r}-

Let yo < y1 < --- < y, be the vertex array of Fo(S7_,). Then zxy2, = Yat2r-1,
and yory1 # Tor41 and 2.1 imply that s <2r+1+d—-1=d+ 2r.
We observe that with Sg_1 = {z1,...,%4-3, Tk—1, %k}, 8.2 yields that

Fo(Sg-1) N{zo,...,zx} = {zo,. .., £d—3, Th—1, Tk }.
Now, we argue as above and obtain that
Fo(Sg-1) = [r0,...,Zd-3, Tk—1s-- -, Th4d—3]-

We may think of this facet as the r = m — 1 case.
B3. Let 0€i<n—-k—-1,0<r<m-2,

{vert2, ... ya-2} C {Zitorts, ..., Tite-1}
and S§_; C {zi42,...,Tit+k—1} such that
{zs, i1} U Sy _3 = {Tsy. .., Tivort1, Y2r+2,y - - Yd—2}-
From 11.,
Fi(S3_a) N {zi, . s Tivka1} = {Zi, -+, Tigars1, Y2rs2s - - - Yd—2, Thotis Thepit1}-

Since {zi, ..., Titvort1, Thyi} C Fi(S)_3) and ziyor42 € Fi(S]_3), we apply 12.
and 2.1 as above and obtain that

Fi(SQ_a) N {Iti, cee ,mn} = {xi, ey T 2r41,Y2r 425 - - 3 Yd—2, Thtiy - - - ,l‘k+i+2r+1}-

We may now assume that ¢ > 0. As we are describing here the facets with the
initial vertex z;, it is an easy consequence of 2.2 and 12. that y4_g # Tg4i-1 if
and only if

Fi(S3_3) = @iy - s Tig2r+1, Y2r42, - - -, Yd=25 Thtis - - - » Thit2r+1)-



120 T. BISZTRICZKY Isr. J. Math.
With S;_3 = {$i+2, . ,iL‘H_d__g}, we have that

Fy(Sa-3) N {Zi, s Tigkt1} = {Tis -+ Tidd—2, Thtis Thotit1 }
for 0 < ¢ < n—k— 1. Noting that ;442 # Zg+i—1 and arguing as above, we
obtain that
Fi(Sa-3) =1{Zi,- . -, Titd—2, Thtiy- - - » Thtitd—2]-
Again, we may think of this as the r = m — 1 case.
B4. Let Sy-3 = {¥1,---,Ya-3} C {Tn-k+2,..-,Tn—1}. Then

Sd—l = {:C'n.—ka :Ll‘n—k+1} U Sd—-3 C {mn—ky ey "En—-l})

and from 9.2,

Fn(sd—l) n {xn—ky cee ,xn} = {mn—k,xn—k+1,yla cee 1yd—31xn}-

Now if k¥ < n, we obtain from 2.2 and 12. that

Fa(Sd=1) = [Zn—k) Tn—k+1, Y1, - - - » Yd—3 Tn)

if and only if yg_3 # Tn_1.

B5. Apply B1 with the reverse vertex array.

Now, let F € F*, 0 <i<n—d+ 1, have the vertex array yo < y; < -+ < ¥s-
If : = 0 then by 8.2, either {y1,...,y4—1} is a paired subset of {z,...,zx} [type
B1 or B2] or {yo,¥1,¥a-1} = {0,Z1,%x} and {y2,...,ya—2} is a paired subset
of {z2,...,zk-1} [type B3 (k <n)or B4 (k=n)]. If 1 <i<n—-k—1 then
{¥o0,---,¥d-2} is a paired set and by 14., {y2,...,Ya-2} C {Tit2s.- -, Tith-1}
[type B3]. If 0 < n — k <i<n—d+ 1 then 9.2 yields that F is type B4 or B5.

Finally, we note that d — 3 = 2(m — 1) and recall that

>()=(1)

Clearly, there are

k—2 k-2 .
. —m
m-1,j-1)=2 )
2 > J=1) __H( _1)

j=d-2 J
facets in B1 and B5. Since each facet in B2 is determined by an S;_3 C
{z1,...,Zk—2}, there are p(m — 1,k — 2) = (k_"‘_l) of them.

m—1
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Let k = n. Then each facet in B4 is determined by an Sq_3 C {z2,...,zn_1}

n—m-—1

and there are p(m — 1,n — 2) = ( ) of them. Thus, in this case,

m—1
2 j—m n—m-1 iy j—m
Jar(P) =2 Z (m—l)+< m-—1 ) :2,2 (m—l)
j=d-2 F=d-2
n—m-—1 i n—-m-1 i
= =92
2i=d{\:2—m (m - 1> i:;—l (m - 1)

:2(":”’”).

Let k < n. Considering B3, each facet in Fo{F* 1 < i < n—k~—1)is
determined by an Sg_3 C {z3,...,Zk—1}({Zit+2,--.,Titk—2}), and there are

p(m—1, k—2)+(n—k—1)p(m—1, k—3) = (’“ -m- 1) k1) (k —m— 2)

m—1 m—1
of them. In B4, each facet is determined by an Sg_3 C {Zp—k42,...,2Zp—2} and
there are p(m — 1,k — 3) = (k:nm_I2 of them. Therefore,

far(P) =2 22(;:7%(1“;7]1) +-n ("7

=2<k_m> +(n~k)(k_m_2). I

m m-—1

16. COROLLARY: Let P be an ordinary d-polytope with the vertex array
T < x1 < -++ < Z,, and the characteristick, d =2m +1 > 5.

16.1 If k = n then P is cyclic with the same vertex array.

16.2 Ifk = d then fq_1(P) = n+1 and the (d—1)-faces of P are [zg, 21, . ..,Td—1}

[Zn—d41)- -3 Tn-1,2n] and  [Ti—d41,.-.,Tic1,Lig1y. .., Titd—1] for
t=1,...,n—1.

Proof: 1. It is immediate that if k£ = n then F = F®U F* and P is simplicial.
Theorem B or Lemmas 8.2 and 9.2 now yield that any d element Gale set of V
is the set of vertices of a facet of P.

2. Let k = d. The assertion is trivial if n = d, and

fd-l(P)=2<m7:1) +(n—d)<::i> =2m+24+n-d=n+1l
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Let F; = [Ti—dt1,---,Tiz1, Titly---,Titd—1) for 1 = 1,...,n — 1, and assume
that d < n.
From B1 and B5, we obtain [z, ...,zq4-1] and [Zn—g41,--.,T1], respectively.

B2 yields F; forodd i =1,...,d — 2. B3 yields F; foreveni=2,...,d—1, and
i=d,...,n — 2. Finally, B4 yields F,,_,. 1

4. Remarks and examples

It is clear that although we can describe ordinary (2m + 1)-polytopes, further
study is needed to really understand them. For example, 16.2 is a surprising
result that hints of something special about ordinary (2m + 1)-polytopes with
characteristic 2m + 1, m > 2. Also, while the present definition of an ordinary
d-polytope is a reasonable one because it recognizes the parity of d, it does not
indicate in any way how to obtain non-cyclic ordinary 2m-polytopes. Is there
a better definition of ordinary (2m + 1)-polytopes? This relates of course to
the problem of a second definition of an ordinary d-polytope that yields cyclic
(2m + 1)-polytopes and non-trivial 2m-polytopes.

Next, the difference between the theory of ordinary 3-polytopes and that of
those of higher dimension. From [1], we note that if P is an ordinary 3-polytope
with fo(P) =n+1 and char P = k then

[g]+k§f2(P)§n+k—2=2<kzl>+(n—k)(k;3).

Thus, P is not combinatorially unique. It is somewhat surprising that already
an ordinary 5-polytope with n+ 1 vertices and characteristic k is combinatorially

unique.

Finaliy, we refer to [1] for examples of ordinary 3-polytopes. Below, we present
two examples of higher dimensional ones. In each case, the polytope is d-
dimensional with the vertex array o < z; < --- < z, and the characteristic
k, d = 2m + 1. We specify the polytope by (n, k,d) and denote the facets using
the subscripts of the z;’s. We list the facets via Theorem B.
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Example 1: (n,k,d) = (7,6,5) and f, = 14.

B1l: [0,1,2,3,4],[0,1,2,4,5],(0,2,3,4,5];

B2: [0,2,3,5,6],[0,3,4,5,6],[0,1,2,5,6,7);

B3: [0,1,3,4,6,7],[0,1,4,5,6,7],[0,1,2,3,6,7;

B4: [1,2,3,4,7],[1,2,4,5,7];

B5: [2,3,4,5,7),[2,3,5,6,7),[3,4,5,6,7].
Example 2: (n,k,d) = (10,8,7) and fs = 26.

Bl: [0,1,2,3,4,5,6],[0,1,2,3,4,6,7],[0,1,2,4,5,6,7],[0,2,3,4,5,6,);

B2: [0,2,3,4,5,7,8],[0,2,3,5,6,7,8],[0,3,4,5,6,7,8],
[0,1,2,4,5,7,8,9,10],[0,1,2,5,6,7,8,9,10],[0,1,2,3,4,7,8,9, 10};

B3: [0,1,3,4,5,6,8,9),(0,1,3,4,6,7,8,9],(0,1,4,5,6,7,8,9],
[0,1,2,3,5,6,8,9,10],[0,1,2,3,6,7,8,9,10],
[1,2,4,5,6,7,9,10],(1,2,3,4,6,7,9, 10],
[0,1,2,3,4,5,8,9,10],[1,2,3,4,5,6,9, 10);

B4: [2, 3,4,5,6,7, 10], [2, 3,4,5,7,8, 10], [2, 3,5,6,7,8, 10];
Bs: [3,4,5,6,7,8,10],([3,4,5,6,8,9,10],[3,4,6,7,8,9,10], [4,5,6, 7,8,9, 10].
References

[1] T. Bisztriczky, Ordinary 3-polytopes, Geometriae Dedicata 52 (1994), 129-142.

[2] D. Gale, Neighborly and cyclic polytopes, Proceedings of Symposia in Pure
Mathematics 7 (convexity) (1963), 225-232.

[3] H.W. Gould, Combinatorial Identities, Morgantown Printing, W. Virginia, 1972.

[4] B. Griinbaum, Convex Polytopes, Interscience, New York, 1967.

[8] G. C. Shephard, A theorem on cyclic polytopes, Israel Journal of Mathematics 6
(1968), 368-372.



