ORDINARY $(2m + 1)$ -POLYTOPES

BY

T. BISZTRICZKY

Department of Mathematics and Statistics, The University of Calgary Calgary, Canada T\$N 1N4 e-mail: tbisztri@math.ucalgary.ca

ABSTRACT

For each k, m and n such that $n \ge k \ge 2m + 1 \ge 5$, we present a convex $(2m + 1)$ -polytope with $n + 1$ vertices and $2{k-m \choose m} + (n - k){k-m-2 \choose m-1}$ facets with the property that there is a complete description of each of the facets based upon a total ordering of the vertices.

Introduction

We introduce a class of convex $(2m + 1)$ -polytopes P, via a total ordering of the vertices of P, which contains the cyclic $(2m + 1)$ -polytopes and which has the property that there is a complete description of the facets of each P . These polytopes, which we call ordinary, have been defined for $m = 1$ in [1] and we present them here for $m > 1$. In fact, we define an ordinary d-polytope for any $d \geq 3$ but show that the polytope is not cyclic only if $d = 2m + 1$ (Theorem A).

As guide-posts, we indicate the central concepts and results of our theory.

Let P be a convex d-polytope in E^d , $d = 2m + 1 \ge 5$, with a totally ordered set of vertices, say, $x_0 < x_1 < \cdots < x_n$. Then P is ordinary if each of its facets satisfies a global condition (the necessary part of Gale's Evenness Condition) and a local one (a specific relation among the vertices of a facet). Then there exist integers k and l (see Lemma 4 for the existence of k) such that $d \leq k, l \leq n$, conv $\{x_0, x_i\}$ is an edge of P if and only if $1 \leq i \leq k$, and $conv\{x_{n-i}, x_n\}$ is an edge of P if and only if $1 \leq i \leq l$. In fact, k is equal to l (Corollary 13) and we

Received July 11, 1994

102 T. BISZTRICZKY Isr. J. Math.

call it the characteristic of P. Given k and l, we list the facets of P containing x_0 or x_n in Lemmas 8 and 9, and the other facets of P in Lemma 11. In Theorem B and its Corollary, we describe completely these facets and show that if k is the characteristic of P then

$$
f_{2m}(P) = 2\binom{k-m}{m} + (n-k)\binom{k-m-2}{m-1},
$$

and that if $k = n$ then P is cyclic.

Finally, we note that ordinary 3-polytopes were inspired by the idea of choosing, as vertices, points on a convex ordinary space curve in $E³$. Unfortunately, there is as yet no definition of a convex ordinary space curve in E^d for $d > 3$. However, certain types of curves in E^d (for example, curves of order d) have properties that are independent of d , as long as the parity of d is the same. Thus our expectation, in generalizing the definition of an ordinary 3-polytope, is that there is a new class of d-polytopes only if $d = 2m + 1$. As this is the case, our approach seems to be a reasonable one.

1. Definitions

Let Y be a set of points in E^d , $d \geq 3$. Then conv Y is the convex hull of Y and if $Y = \{y_1, \ldots, y_s\}$ is finite, we set

$$
[y_1,\ldots,y_s]=\mathrm{conv}\{y_1,\ldots,y_s\}.
$$

Thus, $[y_1, y_2]$ is the closed segment with end points y_1 and y_2 .

Let $V = \{x_0, x_1, \ldots, x_n\}$ be a totally ordered set of $n + 1$ points in E^d with $x_i < x_j$ if and only if $i < j$. We say that x_i and x_{i+1} are successive points, and if $x_i < x_j < x_k$ then x_j separates x_i and x_k or x_j is between x_i and x_k .

Let $Y \subset V$. Then Y is connected (in V) if $x_i < x_j < x_k$ and $\{x_i, x_k\} \subset Y$ imply that $x_j \in Y$. If Y is not connected then clearly it can be written uniquely as the union of maximal connected subsets, which we call components of Y . A component X of Y is even or odd according to the parity of $|X| = \text{card } X$. Next, Y is a Gale set (in V) if any two points of $V\Y$ are separated by an even number of points of Y . Finally, Y is a **paired set** if it is the union of mutually disjoint subsets $\{x_i, x_{i+1}\}.$

We note that V , \emptyset and all paired subsets of V are Gale sets. Conversely, let $Y \subset V$ be a Gale set. If $Y \cap \{x_0, x_n\} = \emptyset$ then Y is a paired set. Thus if Y is not connected then Y has at most two odd components, each of which contains x_0 or x_n .

We acknowledge that a connected set is an adaptation of Shephard's contiguous set in [5], and that Gale sets stem from the article [2] by Gale.

Let r and s be integers such that $0 < 2r \leq s$, and let $Y \subset V$ be a connected set with $|Y| = s$. Let $p(r, s)$ be the number of paired subsets X of Y such that $|X| = 2r$; that is, X is the union of r mutually disjoint pairs.

Since $p(1, s) = s - 1 = {s-1 \choose 1}$, we assume that $r \ge 2$ and that $p(r-1, s) =$ ${s-r+1 \choose r-1}$. Noting that $p(r, s) = p(r, s - 1) + p(r - 1, s - 2)$,

$$
p(r,s) = \sum_{i=2}^{s-2(r-1)} p(r-1, s-i)
$$

=
$$
\sum_{i=2}^{s-2r+2} {s-i-r+1 \choose r-1} = \sum_{j=s-r-1}^{r-1} {j \choose r-1}
$$

=
$$
\sum_{j=r-1}^{s-r-1} {j \choose r-1} = {s-r \choose r};
$$

cf. formula 1.52 in [3]. We shall use $p(r, s)$ to calculate the number of facets of an ordinary polytope.

Let $P \subset E^d$ be a (convex) d-polytope. For $-1 \leq i \leq d$, let $\mathcal{F}_i(P)$ denote the set of *i*-faces of P and $f_i(P) = |\mathcal{F}_i(P)|$. When there is no danger of confusion, we set $\mathcal{F}_i = \mathcal{F}_i(P)$ and $\mathcal{F} = \mathcal{F}_{d-1}$. Let $V = \mathcal{F}_0(P) = \{x_0, x_1, \ldots, x_n\}, n \ge d$. We set $x_i < x_j$ if and only if $i < j$, and call $x_0 < x_1 < \cdots < x_n$ a vertex array of P. If we reverse the ordering, we call $x_n < x_{n-1} < \cdots < x_0$ a reverse vertex array of P. Let $G \in \mathcal{F}_i(P)$, $1 \leq i \leq d$, such that $G \cap V = \{y_0, y_1, \ldots, y_s\}$ (each y_j is some x_i) and $y_0 < y_1 < \cdots < y_s$ is the ordering induced by $x_0 < x_1 < \cdots < x_n$. We call $y_0 < y_1 < \cdots < y_s$ an (induced) vertex array of G, and set $y_j = y_0$ for $j < 0$ and $y_j = y_s$ for $j > s$.

We recall from [2] and [4] that a d-polytope P with the vertex array $x_0 < x_1 <$ $\cdots < x_n$ is cyclic if P is simplicial and satisfies Gale's Evenness Condition: A d element subset Y of V determines a facet of P if and only if Y is a Gale set. Furthermore, if P is cyclic then $p(r, s) = {s-r \choose r}$ readily yields that

$$
f_{d-1}(P) = \begin{cases} \frac{n+1}{n+1-m} \binom{n+1-m}{m} & \text{for } d = 2m, \\ 2\binom{n-m}{m} & \text{for } d = 2m+1. \end{cases}
$$

Let P be a d-polytope with the vertex array $x_0 < x_1 < \cdots < x_n$, $n \ge d \ge 3$. Then P is ordinary if for each facet F of P ,

- (01) $F \cap V$ is a Gale set, and
- (02) if $y_0 < y_1 < \cdots < y_s$ is the (induced) vertex array of F then the $(d-2)$ -faces of F are $[y_0, y_1, \ldots, y_{d-2}]$, $[y_{s-d+2}, \ldots, y_{s-1}, y_s]$ and $[y_{i-d+2}, \ldots, y_{i-1}, y_{i+1},$ \ldots , y_{i+d-2}] for $i = 1, \ldots, s-1$.

We emphasize the convention that in the description of faces as in (02), the terms y_j are to be ignored if $j < 0$ or $j > s$.

Since cyclic d-polytopes are simplicial, they are clearly ordinary. Next, and this is the reason why $f_0(P) = n + 1$ and $f_0(F) = s + 1$, if P is ordinary with the vertex array $x_0 < x_1 < \cdots < x_n$ then it is ordinary with the reverse vertex array $x_n < x_{n-1} < \cdots < x_0$.

Finally, if P is an ordinary 3-polytope and $F \in \mathcal{F}_2(P)$ has the vertex array $y_0 < y_1 < \cdots < y_s$ then F is a polygon with the edges $[y_0, y_1], [y_{s-1}, y_s]$ and $[y_j, y_{j+2}]$ for $j = 0, \ldots, s - 2$. For a description of ordinary 3-polytopes, we refer to [1]. As we shall see, there are differences between the theories of ordinary 3-polytopes and ordinary *d*-polytopes, $d \geq 4$.

2. Preliminaries

Henceforth, we assume that P is an ordinary d-polytope with the vertex array $x_0 < x_1 < \cdots < x_n, d \ge 4$. We list some of the consequences of our definition, and note that Lemmas 4, 8 and 9, and Theorem A are particularly significant.

1. LEMMA: Let $F \in \mathcal{F}$ with the vertex array $y_0 < y_1 < \cdots < y_s$, and let $G \in \mathcal{F}_{d-2}$ with the vertex array $z_1 < z_2 < \cdots < z_t$.

1.1 $f_{d-2}(F) = s + 1$ and $f_0(G) \leq 2d - 4$.

- 1.2 The vertices $y_i, y_{i+1}, \ldots, y_{i+d-1}$ are affinely independent, $i = 0, \ldots, s-d+1$.
- 1.3 If $s \geq d$ then $[y_0, y_1, \ldots, y_{d-2}], [y_0, y_2, \ldots, y_{d-1}], [y_{s-d+1}, \ldots, y_{s-2}, y_s]$ and $[y_{s-d+2},..., y_{s-1}, y_s]$ are the only $(d-2)$ -faces of F that are simplices.
- 1.4 If $G \subset F$ then $|F \cap \{x_i \mid z_1 \leq x_i \leq z_t\}| \leq t+1$, with equality for $t \geq d$; furthermore, if $t \leq 2d - 5$ then $y_0 = z_1$ or $y_s = z_t$.
- 1.5 $[y_0, y_j] \in \mathcal{F}_1$ if and only if $1 \leq j \leq d-1$ if and only if $[y_{s-j}, y_s] \in \mathcal{F}_1$.
- 1.6 If $s \geq d$ then for $j = 0, ..., s d$, $[y_j, y_{j+1}, y_{j+d-1}, y_{j+d}] \in \mathcal{F}_2$ and $[y_i, y_{i+d}] \notin \mathcal{F}_1$.

Proof: The first four observations readily follow from (02) .

5. If $1 \leq j \leq d-1$ then 1.3 yields that $[y_0, y_j]$ is an edge of P. Let $d \leq j \leq s$ and $\tilde{G} \in \mathcal{F}_{d-2}(F)$ such that $\{y_0, y_i\} \subset \tilde{G}$. Clearly,

$$
G = [y_{i-d+2},\ldots,y_{i-1},y_{i+1},\ldots,y_{i+d-2}]
$$

for some i such that $i - d + 2 \leq 0$ and $d \leq j \leq i + d - 2$. Hence, $2 \leq i \leq d - 2$ and it follows that $y_1 \in \tilde{G}$. But then $[y_0, y_j]$ is not the intersection of $(d-2)$ -faces of F, and it is not an edge of P.

By the reverse vertex array, we obtain the second part of 1.5.

6. Let $0 \leq j \leq s - d$. Since $d \geq 4$, we have that

$$
\bigcap_{i=j+2}^{j+d-2} [y_{i-d+2},\ldots,y_{i-1},y_{i+1},\ldots,y_{i+d-2}] = [y_j,y_{j+1},y_{j+d-1},y_{j+d}]
$$

is a face of P. It is now easy to check that if $\{y_j, y_{j+d}\} \subset \tilde{G} \in \mathcal{F}_{d-2}(F)$ then $\{y_{j+1}, y_{j+d-1}\} \subset \tilde{G}$. Thus, $[y_j, y_{j+d}] \notin \mathcal{F}_1$ and from this it follows that $[y_j, y_{j+1}, y_{j+d-1}, y_{j+d}] \in \mathcal{F}_2.$

2. LEMMA: Let $F \in \mathcal{F}$ with the vertex array $y_0 < \cdots < y_r < y_{r+1} < \cdots <$ $y_{t-1} < y_t < \cdots < y_s$, $\{y_r, y_{r+1}\} = \{x_j, x_{j+1}\}$ and $\{y_{t-1}, y_t\} = \{x_{l-1}, x_l\}.$ 2.1 If $r \ge 1$ and $s \ge r + d - 1$ then $y_{r-1} = x_{j-1}$. 2.2 If $t \leq s-1$ and $d-1 \leq t$ then $y_{t+1} = x_{l+1}$.

Proof: 1. Let $r \ge 1$ and $s \ge r+d-1$. Then $2 \le r+1 \le s-d+2 \le s-2$ and

$$
G = [y_{r-d+3},\ldots,y_r,y_{r+2},\ldots,y_{r+d-1}] \in \mathcal{F}_{d-2}.
$$

Let $F' \in \mathcal{F}$ with the vertex array $z_0 < z_1 < \cdots < z_u$ such that $F' \cap F = G$. Then $F' \cap \{x_j, x_{j+1}\} = \{x_j\}, x_j > x_0$ and (01) imply that x_{j-1} and x_j are successive vertices of F' . Clearly

$$
G = [z_{i-d+2},\ldots,z_{i-1},z_{i+1},\ldots,z_{i+d-2}]
$$

for some $1 \le i \le u - 1$. Since $|\{y_{r+2},..., y_{r+d-1}\}| = d - 2$, it follows that $\{y_{r-1}, y_r\} \subset \{z_{i-d+2}, \ldots, z_{i-1}\}.$ Hence, y_{r-1} and $y_r = x_j$ are successive vertices of F' , and $y_{r-1} = x_{i-1}$.

2. Let $d-1 \leq t \leq s-1$. Then

$$
G = [y_{t-d+1}, \ldots, y_{t-2}, y_t, \ldots, y_{t+d-1}] \in \mathcal{F}_{d-2}
$$

and, with F' defined as above, x_i and x_{i+1} are successive vertices of F'. Now, $|\{y_{t-d+1},...,y_{t-2}\}| = d-2$ yields $\{y_t,y_{t+1}\} \subset \{z_{i+1},...,z_{i+d-2}\}$ and $y_{t+1} =$ x_{l+1} .

Let
$$
V^0 = \{x_i \in V \mid [x_0, x_i] \in \mathcal{F}_1\}
$$
 and $\mathcal{F}^0 = \{F \in \mathcal{F} \mid x_0 \in F\}.$

3. LEMMA: Let $x_0 \neq x_i \in F \in \mathcal{F}^0$. Then $|F \cap V^0| = d-1$, and $x_i \in V^0$ if and *only if* $|F \cap \{x_0, \ldots, x_i\}| \le d$.

Proof: Apply 1.5.

4. LEMMA: There is an integer k such that $d \le k \le n$ and $V^0 = \{x_1, \ldots, x_k\}.$

Proof: Let $k \leq n$ be the largest integer such that $x_k \in V^0$. Clearly, $k \geq d$. We show that $i \geq 2$ and $x_i \in V^0$ imply that $x_{i-1} \in V^0$.

Let $\mathcal{F}' = \{F \in \mathcal{F} \mid \{x_0, x_i\} \subset F\}.$ Then the edge $[x_0, x_i]$ is the intersection of all the $F \in \mathcal{F}'$, and by 3., $|F \cap \{x_0, \ldots, x_i\}| \leq d$ for each $F \in \mathcal{F}'$. Thus, if $x_{i-1} \in F \in \mathcal{F}'$ then $|F \cap \{x_0, \ldots, x_{i-1}\}| \leq d$ and $x_{i-1} \in V^0$.

If $2 \leq i \leq n-1$ then for any $F \in \mathcal{F}', F \cap \{x_{i-1}, x_{i+1}\} \neq \emptyset$ by (01). Since there must be an $F \in \mathcal{F}'$ such that $x_{i+1} \notin F$, we have that $x_{i-1} \in F$.

If $i = n$ then each $F \in \mathcal{F}'$ is a $(d-1)$ -simplex by 3. Let r be the largest integer such that $r < n$ and there is an $F_r \in \mathcal{F}'$ with $x_r \in F_r$. Let $y_0 < y_1 < \cdots < y_{d-1}$ be the vertex array of F_r . Then $y_0 = x_0$, $y_{d-2} = x_r$, $y_{d-1} = x_n$ and

$$
G=[y_0,\ldots,y_{d-4},x_r,x_n]\in \mathcal{F}_{d-2}.
$$

Let $F' \in \mathcal{F}'$ such that $F' \cap F_r = G$. If $x_{r+1} \neq x_n$ then $x_{r-1} \in F' \cap F_r$ by (01). Since $x_{r-1} \in F_r$ implies $x_{r-1} = y_{d-3}$, and $x_{r-1} \in G$ implies $x_{r-1} = y_{d-4}$, it follows that $x_{r+1} = x_n$ and $x_r = x_{n-1}$.

- 5. LEMMA: Let $V^0 = \{x_1, \ldots, x_k\}$. Let $F \in \mathcal{F}^0$ with the vertex array $x_0 < y_1 <$ \cdots < y_s and $x_d \le y_{d-1}$.
	- 5.1 If $d = 2m$ then either $x_k = y_{d-1}$ and $\{y_1, \ldots, y_{d-2}\}$ is a paired subset of $\{x_1, ..., x_{k-1}\}$ or $x_1 = y_1$ and $\{y_2, ..., y_{d-1}\}$ *is a paired subset of* ${x_2,\ldots,x_k}.$
	- 5.2 If $d = 2m + 1$ then either $\{y_1, \ldots, y_{d-1}\}$ is a paired subset of $\{x_1, \ldots, x_k\}$ or $x_1 = y_1, x_k = y_{d-1}$ and $\{y_2, \ldots, y_{d-2}\}$ is a paired subset of $\{x_2, \ldots, x_{k-1}\}.$

Proof: We note that by 1.5 and 4., $y_{d-1} \leq x_k$. Next, $y_{d-1} \geq x_d$ implies that ${x_0, y_1, \ldots, y_{d-1}}$ is not connected. Thus, the two assertions in both 5.1 and 5.2 are mutually exclusive.

1. Let $d = 2m$. If $\{x_0, y_1, \ldots, y_{d-1}\}$ is paired then $x_1 = y_1$ and $\{y_2, \ldots, y_{d-1}\}$ is paired. If $\{x_0, y_1, \ldots, y_{d-1}\}$ is not paired then because it is not connected, it has exactly two odd components. One component contains x_0 and the other contains y_{d-1} . By (01), the latter is not possible if $y_{d-1} < x_k$. Hence, $y_{d-1} = x_k$ and $\{y_1,\ldots,y_{d-2}\}\)$ is paired.

2. Let $d = 2m + 1$. Since $\{x_0, y_1, \ldots, y_{d-1}\}$ is not connected and contains an odd number of elements, it has exactly one odd component which contains either x_0 or y_{d-1} . In case of the former, $\{y_1,\ldots,y_{d-1}\}$ is paired. In case of the latter, we have $x_1 = y_1, \{y_2, \ldots, y_{d-2}\}$ is paired and, as above, $y_{d-1} = x_k$.

We note that while the assertions in 5 are somewhat repetitive, they make it easier to list the facets in \mathcal{F}^0 . Our goal now is to list the d element subsets of $V^0 \cup \{x_0\}$ that by 1.2 and 3., determine the facets in \mathcal{F}^0 .

6. LEMMA: Let $V^0 = \{x_1, \ldots, x_k\}$. For each integer r such that $d-1 \le r \le k$, there is an $F \in \mathcal{F}^0$ such that $x_r \in F$ and $|F \cap \{x_0, \ldots, x_r\}| = d$; that is, $x_r \in$ $F \cap V^0 \subset \{x_1, \ldots, x_r\}.$

Proof: Since the assertion is true for $r = k$, we show that if it is true for r, $d \leq r \leq k$, then it is true for $r-1$. Let $d \leq r \leq k$ and let $F \in \mathcal{F}^0$ with the vertex array $x_0 < y_1 < \cdots < y_s$, $x_r = y_{d-1}$.

If $r = n$ then $F = [x_0, y_1, \ldots, y_{d-2}, x_n]$ is a $(d-1)$ -simplex by 3. From the proof of 4., we may assume that $x_{n-1} = y_{d-2}$. We note that $G = [x_0, y_1, \ldots, y_{d-3}, x_{n-1}]$ $\in \mathcal{F}_{d-2}$ and so, there is an $F' \in \mathcal{F}$ such that $F' \cap F = G$. Then $x_n \notin F'$, $F' \in \mathcal{F}_0$ and $x_{n-1} \in F' \cap V^0 \subseteq \{x_1, \ldots, x_{n-1}\}.$

Let $r \leq n-1$. Since $r \geq d$ and $|F \cap \{x_1, \ldots, x_r\}| = d-1$, it follows that there is an integer j such that $2 \leq j \leq r$ and

$$
F\cap \{x_{j-1},\ldots,x_r\}=\{x_j,\ldots,x_r\}.
$$

If $x_{r+1} \notin F$ then $x_{j-1} \notin F$ and (01) yield that $\{x_j, \ldots, x_r\}$ is an even component of $F \cap V$, $j \leq r-1$ and $x_{r-1} = y_{d-2}$. By (02),

$$
G = [x_0, y_1, \ldots, y_{d-3}, x_{r-1}] \in \mathcal{F}_{d-2}.
$$

Let $F' \in \mathcal{F}$ such that $F' \cap F = G$. Then $F' \in \mathcal{F}^0$, $x_r \notin F'$, $\{x_i, \ldots, x_{r-1}\} \subset F'$ and by 1.4, $|F' \cap \{x_0, ..., x_{r-1}\}| \le d$. Since $|\{x_j, ..., x_{r-1}\}|$ is odd, it follows that $x_{j-1} \in F$ and $|F| \cap \{x_0, \ldots, x_{r-1}\}| = d$.

If $x_{r+1} \in F$ then $x_{r+1} \notin V^{\circ}$ and 4. imply that $r = k$. Since

$$
\tilde{G} = [x_0, y_2, \dots, y_{d-1}] = [x_0, y_2, \dots, y_{d-2}, x_k] \in \mathcal{F}_{d-2},
$$

there is an $\tilde{F} \in \mathcal{F}$ such that $\tilde{F} \cap F = \tilde{G}$. We note that $\tilde{F} \in \mathcal{F}^0$, $x_{k+1} \notin \tilde{F}$ and $x_k \in \tilde{F} \cap V^0 \subseteq \{x_1, \ldots, x_k\}$ by 4. We argue now as in the preceding paragraph to verify the assertion for $k - 1$.

7. LEMMA: Let $V^0 = \{x_1, \ldots, x_k\}, d \leq k \leq n$. Let $d-1 \leq r \leq k$ and $F \in \mathcal{F}^0$ such that $x_r \in F$ and $|F \cap \{x_0, \ldots, x_r\}| = d$. Let $\{x_j, x_{j+1}\} \subset F \cap V$ for some $1 \leq j \leq r-2$.

7.1 If $j > 1$ and $x_{j-1} \notin F$ then there is an $\tilde{F} \in \mathcal{F}^0$ such that

$$
\tilde{F} \cap V^0 = ((F \cap V^0) \setminus \{x_{j+1}\}) \cup \{x_{j-1}\}.
$$

7.2 If $j < r-2$ and $x_{j+2} \notin F$ then there is an $\tilde{F} \in \mathcal{F}^0$ such that

$$
\tilde{F} \cap V^0 = ((F \cap V^0) \setminus \{x_j\}) \cup \{x_{j+2}\}.
$$

Proof: Let $y_0 < y_1 < \cdots < y_s$ be the vertex array of F. Then $x_0 = y_0$, $x_r = y_{d-1}$ and $F \cap V^0 = \{y_1, \ldots, y_{d-1}\}.$ For $2 \le i \le d-2$,

$$
G_i = [y_0, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{i+d-2}] \in \mathcal{F}_{d-2}
$$

and there is an $F_i \in \mathcal{F}$ such that $F_i \cap F = G_i$. We note that $F_i \in \mathcal{F}^0$ and $(F \cap V^0) \backslash \{y_i\} \subseteq F_i \cap V^0.$

If $j > 1$ and $x_{j-1} \notin F$ then with $\{x_j, x_{j+1}\} = \{y_{i-1}, y_i\}$, (01) yields that $x_{j-1} \in F_i$. If $j < r-2$ and $x_{j+2} \notin F$ then with $\{x_j, x_{j+1}\} = \{y_i, y_{i+1}\},$ (01) yields that $x_{j+2} \in F_i$. Now by 3. and 4., $\tilde{F} = F_i$ in each case.

In view of the preceding lemmas, we can now list all the facets in \mathcal{F}^0 . Henceforth, we let S_j denote a paired set of vertices of cardinality $j > 0$, and set $S_0=\emptyset$.

8. LEMMA: Let $V^0 = \{x_1, \ldots, x_k\}.$ 8.1 If $d = 2m$ then

$$
\mathcal{F}^{0} = \{F_{0,1}(S_{d-2}) | S_{d-2} \subset \{x_2, \ldots, x_k\}\}\
$$

$$
\cup \{F_0^k(S_{d-2}) | S_{d-2} \subset \{x_1, \ldots, x_{k-1}\}\}\
$$

where

$$
F_{0,1}(S_{d-2})\cap \{x_0,\ldots,x_k\}=\{x_0,x_1\}\cup S_{d-2}
$$

and

$$
F_0^k(S_{d-2}) \cap \{x_0,\ldots,x_k\} = \{x_0\} \cup S_{d-2} \cup \{x_k\}.
$$

8.2 *If d= 2m + 1 then*

$$
\mathcal{F}^0 = \{ F_0(S_{d-1}) \mid S_{d-1} \subset \{x_1, \ldots, x_k\} \}
$$

$$
\cup \{ F_{0,1}^k(S_{d-3}) \mid S_{d-3} \subset \{x_2, \ldots, x_{k-1}\} \}
$$

where

$$
F_0(S_{d-1}) \cap \{x_0,\ldots,x_k\} = \{x_0\} \cup S_{d-1}
$$

and

$$
F_{0,1}^k(S_{d-3})\cap \{x_0,\ldots,x_k\}=\{x_0,x_1\}\cup S_{d-3}\cup \{x_k\}.
$$

We note that 8. states simply that if Q is the vertex figure of P at x_0 determined by a hyperplane H and if $\{z_i\} = H \cap [x_0, x_i]$ for $i = 1, \ldots, k$ then Q is a cyclic $(d-1)$ -polytope with the vertex array $z_0 < z_1 < \cdots < z_k$. Also, if $d = 2m$ then

$$
|\mathcal{F}^0| = 2p(m-1, k-1) = 2\binom{k-m}{m-1},
$$

and if $d = 2m + 1$ then

$$
\begin{aligned} \left| \mathcal{F}^0 \right| &= p(m,k) + p(m-1,k-2) \\ &= \binom{k-m}{m} + \binom{k-m-1}{m-1} = \frac{k}{k-m} \binom{k-m}{m}. \end{aligned}
$$

Next, let

$$
V^* = \{x_i \in V | [x_{n-i}, x_n] \in \mathcal{F}_1\} \text{ and } \mathcal{F}^* = \{F \in \mathcal{F} | x_n \in F\}.
$$

By reversing the vertex array, we obtain that there is an l such that $d\leq l\leq n$ and $V^* = \{x_{n-l}, \ldots, x_{n-1}\}$, and the analogues of 3, 5, 6 and 7.

9. LEMMA: Let $V^* = \{x_{n-l}, \ldots, x_{n-1}\}\$ *9.1 If d = 2m then*

$$
\mathcal{F}^* = \{F_{n-1,n}(S_{d-2}) \mid S_{d-2} \subset \{x_{n-l}, \ldots, x_{n-2}\}\}\
$$

$$
\cup \{F_n^{n-l}(S_{d-2}) \mid S_{d-2} \subset \{x_{n-l+1}, \ldots, x_{n-1}\}\}\
$$

where

$$
F_{n-1,n}(S_{d-2})\cap \{x_{n-l},\ldots,x_n\}=S_{d-2}\cup \{x_{n-1},x_n\}
$$

and

$$
F_n^{n-l}(S_{d-2})\cap \{x_{n-l},\ldots,x_n\}=\{x_{n-l}\}\cup S_{d-2}\cup \{x_n\}.
$$

 9.2 *If d* = $2m + 1$ *then*

$$
\mathcal{F}^* = \{ F_n(S_{d-1}) \mid S_{d-1} \subset \{ x_{n-l}, \dots, x_{n-1} \} \}
$$

$$
\cup \{ F_{n-1,n}^{n-l} (S_{d-3}) \mid S_{d-3} \subset \{ x_{n-l+1}, \dots, x_{n-2} \} \}
$$

where

$$
F_n(S_{d-1}) \cap \{x_{n-l}, \ldots, x_n\} = S_{d-1} \cup \{x_n\}
$$

and

$$
F_{n-1,n}^{n-l}(S_{d-3})\cap \{x_{n-l},\ldots,x_n\}=\{x_{n-l}\}\cup S_{d-3}\cup \{x_{n-1},x_n\}.
$$

We are now ready to exclude the case $d = 2m$ from our considerations.

THEOREM A: Let P be an ordinary *d*-polytope with the vertex array $x_0 < x_1 <$ $\cdots < x_n$, $d = 2m \geq 4$. Then P is cyclic.

Proof:

(i) $[x_0, x_n] \in \mathcal{F}_1$:

We suppose that $V^0 = \{x_1, \ldots, x_k\}, d \leq k < n$, and seek a contradiction. By 8.1, there is an $F \in \mathcal{F}^0$ with the vertex array $y_0 < y_1 < \cdots < y_s$ such

that $\{y_0, \ldots, y_{d-1}\} = \{x_0, x_1, \ldots, x_{d-2}, x_k\}.$ Since $d \leq k < n, x_{k-1} \notin F$ and $x_{k+1} \in F$. By (02),

$$
G = [y_0, y_2, \ldots, y_{d-1}] = [x_0, x_2, \ldots, x_{d-2}, x_k] \in \mathcal{F}_{d-2}.
$$

Let $F' \in \mathcal{F}$ such that $F' \cap F = G$. Then $F' \cap \{x_1, x_{k+1}\} = \emptyset$ and $x_{k-1} \in F'$. By 1.4,

$$
F^{'}\cap \{x_0,\ldots,x_k\}=\{x_0,x_2,\ldots,x_{d-2},x_{k-1},x_k\}.
$$

Hence, x_1 and x_{k+1} are separated by an odd number $d-1$ of vertices of F' , a contradiction. Thus, $[x_0, x_n] \in \mathcal{F}_1$ and $k = n = l$.

(ii) P is simplical:

We suppose that

$$
\mathcal{F}' = \{ F \in \mathcal{F} \mid f_0(F) \geq d + 1 \}
$$

is not empty and seek a contradiction.

Since $k = n = l$, $\mathcal{F}' \cap (\mathcal{F}^0 \cup \mathcal{F}^*) = \emptyset$ by 3. Let $F \in \mathcal{F}'$ with the vertex array $y_0 < y_1 < \cdots < y_s$. Then $F \cap \{x_0, x_n\} = \emptyset$ implies that $\{y_0, y_1, \ldots, y_s\}$ is a paired set and $s \geq d+1$. Let

$$
\{y_0,y_1,y_d,y_{d+1}\}=\{x_i,x_{i+1},x_v,x_{v+1}\}
$$

for some suitable i and v. We note that $i \geq 1$. Without loss of generality, we may assume that if $\tilde{F} \in \mathcal{F}'$ then $\tilde{F} \cap V \subset \{x_i, \ldots, x_{n-1}\}.$

We observe that

$$
G=[y_0,y_1,y_3,\ldots,y_d]\in\mathcal{F}_{d-2}
$$

by (02), and there is an $F' \in \mathcal{F}'$ such that $F' \cap F = G$. Since $f_0(G) = d$,

$$
\left|F^{'}\cap\{x_j\mid y_0\leq x_j\leq y_d\}\right|=d+1
$$

by 1.4. Since $F' \cap \{x_{i-1}, x_{v+1}\} = \emptyset$ and $d+1$ is odd, the set above is not paired; a contradiction.

(iii) FOR EACH $S_d \subset \{x_1, \ldots, x_{n-1}\}$, THERE IS AN $F \in \mathcal{F}$ SUCH THAT $F \cap V =$ S_d :

Let $\{y_0, \ldots, y_{d-1}\} \subset V$ be a paired set with $x_0 < y_0 < \cdots < y_{d-1} < x_n$. Then $\{y_0, y_1\} = \{x_r, x_{r+1}\}\$ for some $r \ge 1$, and $y_2 = x_t$ for some $t \ge r+2$. Since $S_{d-2} = \{y_2,\ldots,y_{d-1}\} \subset \{x_{r+2},\ldots,x_{n-1}\},$ it follows from 8.1 and $k = n$ that

$$
[x_0,x_1,y_2,\ldots,y_{d-1}]\in\mathcal{F}.
$$

Then $G = [x_1, y_2, \ldots, y_{d-1}] \in \mathcal{F}_{d-2}$ by (02). Since $y_2 = x_t \ge x_{r+2} \ge x_3$ and P is simplicial, it is clear that

$$
[x_1,x_2,y_2,\ldots,y_{d-1}]
$$

is the other facet of P containing G . Reiteration of this argument yields that

$$
[x_i,x_{i+1},y_2,\ldots,y_{d-1}]\in\mathcal{F}
$$

for $i = 1, \ldots, t - 2$, and hence for $i = r$.

(iv) P Is CYCLIC: By 8., 9., the preceding and (01), we have that P is simplicial and satisfies Gale's Evenness Condition.

3. Ordinary $(2m + 1)$ -polytopes

In this section, we assume that $d = 2m + 1 \ge 5$. From 8.2 and 9.2, we have the facets of P passing through x_0 or x_n . We proceed now with the task of finding the remaining facets of P.

10. LEMMA: Let $V^0 = \{x_1, \ldots, x_k\}, d \le k \le n-2$ and $1 \le i \le n-k-1$. Let *j* be an odd integer, $1 \le j \le d-2$, $S_{d-j-2} \subseteq \{x_{i+2},..., x_{i+k-j-1}\}$ and $F \in \mathcal{F}$ *such that*

$$
F \cap \{x_{i-1},\ldots,x_{i+k}\} = \{x_{i-1},x_i\} \cup S_{d-j-2} \cup \{x_{i+k-j},\ldots,x_{i+k}\}.
$$

Then there is an $F' \in \mathcal{F}$ *such that*

$$
F^{'}\cap \{x_{i},\ldots,x_{i+k+1}\}=\{x_{i},x_{i+1}\}\cup S_{d-j-2}\cup \{x_{i+k-j+1},\ldots,x_{i+k+1}\}.
$$

Proof: Let $y_0 < y_1 < \cdots < y_s$ be the vertex array of F. Then

$$
F \cap \{x_{i-1}, \ldots, x_{i+k}\} = \{y_{r-2}, \ldots, y_{r-2+d}\}\
$$

for some $2 \le r \le s-d+2$. We note that $\{y_{r-2}, y_{r-1}\} = \{x_{i-1}, x_i\}$ and $y_r \ge x_{i+2}$. Hence, $s \le r + d - 2$ by 2.1; that is, $s = r + d - 2$ and

$$
F\cap \{x_{i-1},\ldots,x_{i+k}\}=\{y_{s-d},\ldots,y_s\}.
$$

From 1.6, $[x_{i-1}, x_{i+k}] = [y_{s-d}, y_s] \notin \mathcal{F}_1$. Since

$$
G = [y_{s-j-d+2}, \ldots, y_{s-j-1}, y_{s-j+1}, \ldots, y_{s-j+d-2}] \in \mathcal{F}_{d-2}
$$

for $1 \leq j \leq d-2$ and $x_{i+k-j} = y_{s-j}$, we have that

$$
G = [y_{s-j-d+2},\ldots,y_{s-j-1},x_{i+k-j+1},\ldots,x_{i+k}].
$$

Let $F' \in \mathcal{F}$ such that $F' \cap F = G$. Then $x_{i+k-j} \notin F'$, $i+k < n$ and $|\{x_{i+k-j+1},\ldots,x_{i+k}\}| = j \text{ (odd) yield that } x_{i+k+1} \in F'.$

If $j = 1$ then $y_{s-j-d+2} = y_{s-d+1} = y_{r-1} = x_i$ and $x_{i-1} \notin G$. Thus, $x_{i-1} \notin F'$ and $x_{i+1} \in F'$. Let $j \geq 3$. Then $y_{s-j-d+2} < y_{s-d} = x_{i-1}$ and

$$
G \cap \{x_{i-1},\ldots,x_n\} = \{x_{i-1},x_i\} \cup S_{d-j-2} \cup \{x_{i+k-j+1},\ldots,x_{i+k}\}.
$$

Since $[x_{i-1}, x_{i+k}] \notin \mathcal{F}_1$, it follows from 1.4 and 1.5 that there is exactly one vertex *x* of F' such that $x \notin G$ and $x_{i-1} \leq x \leq x_{i+k}$. Then $x_{i+k-j} \notin F'$ and (01) clearly yield that $x = x_{i+1}$.

11. LEMMA: Let $V^0 = \{x_1, \ldots, x_k\}, d \le k \le n-1$ and $0 \le i \le n-k-1$. For *each* $S_{d-3} \subset \{x_{i+2}, \ldots, x_{i+k-1}\}\$, there is a facet $F_i(S_{d-3})$ of P such that

$$
F_i(S_{d-3}) \cap \{x_i, \ldots, x_{i+k+1}\} = \{x_i, x_{i+1}\} \cup S_{d-3} \cup \{x_{i+k}, x_{i+k+1}\}.
$$

Proof: We note that by 8.2, the assertion is true for $i = 0$. (Since $k < n$, $x_{k+1} \in F_{0,1}^k(S_{d-3})$.) Let $1 \leq i \leq n-k-1$ and assume that the assertion is true for $i-1$.

Let $S_{d-3} \subset \{x_{i+2}, \ldots, x_{i+k-1}\}$. If $x_{i+k-1} \notin S_{d-3}$ then $F_{i-1}(S_{d-3})$ exists by the induction hypothesis. Since

$$
F_{i-1}(S_{d-3}) \cap \{x_{i-1},\ldots,x_{i+k}\} = \{x_{i-1},x_i\} \cup S_{d-3} \cup \{x_{i+k-1},x_{i+k}\},\,
$$

the existence of $F_i(S_{d-3})$ follows from 10. with $j = 1$. Let $x_{i+k-1} \in S_{d-3}$. Since S_{d-3} is paired, there is a largest odd integer j such that $3 \leq j \leq d-2$ and $x_{i+k-j} \notin S_{d-3}$. Then

$$
S_{d-3}=S_{d-j-2}\cup\{x_{i+k-j+1},\ldots,x_{i+k-1}\}
$$

with

$$
S_{d-j-2}=S_{d-3}\cap\{x_{i+2},\ldots,x_{i+k-j-1}\},\,
$$

and

$$
S' = S_{d-j-2} \cup \{x_{i+k-j}, \ldots, x_{i+k-2}\}
$$

is a paired set of cardinality $d-3$. Now, $F_{i-1}(S)$ exists by induction, and $F_i(S_{d-3})$ exists by 10. \blacksquare

12. COROLLARY: Let $V^0 = \{x_1, \ldots, x_k\}, d \le k \le n-1$. Then

$$
[x_i, x_{i+1}, x_{i+k}, x_{i+k+1}] \in \mathcal{F}_2
$$
 for $i = 0, ..., n-k-1$.

Proof: Let $0 \leq i \leq n-k-1$, $S_{d-3} \subset \{x_{i+2},...,x_{i+k-1}\}$ and $y_0 \leq y_1$ \cdots < y_s be the vertex array of $F_i(S_{d-3})$. Then $F_i(S_{d-3}) \cap \{x_i, \ldots, x_{i+k+1}\}$ $\{y_j,\ldots,y_{j+d}\}\text{ for some }0\leq j\leq s-d\text{, and}$

$$
[x_i,x_{i+1},x_{i+k},x_{i+k+1}]=[y_j,y_{j+1},y_{j+d-1},y_{j+d}]\in\mathcal{F}_2
$$

by 1.6. \blacksquare

13. COROLLARY: Let $V^0 = \{x_1, ..., x_k\}, d \le k \le n$. Then

$$
V^* = \{x_{n-k}, \ldots, x_{n-1}\}.
$$

Proof: As we have already noted, $V^* = \{x_{n-l}, \ldots, x_{n-1}\}$ for some $d \leq l \leq n$. If $k = n$ then $[x_0, x_n] \in \mathcal{F}_1$, and $n = l$.

Let $k \leq n-1$ and consider $S_{d-3} = \{x_{n-d+2}, \ldots, x_{n-2}\} \subset \{x_{n-k+1}, \ldots, x_{n-2}\}.$ By 11., $F_{n-k-1}(S_{d-3})$ exists and

$$
F_{n-k-1}(S_{d-3})\cap \{x_{n-k-1},\ldots,x_n\}=\{x_{n-k-1},x_{n-k}\}\cup S_{d-3}\cup \{x_{n-1},x_n\}.
$$

By 1.5, $[x_{n-k}, x_n] \in \mathcal{F}_1$. Thus $n-l \leq n-k$ and $k \leq l$. Now by reversing the vertex array, $l \leq k$.

Since $|V^0| = |V^*| = k$ for some $d \le k \le n$, we call k the characteristic of P and write $k = \text{char } P$.

For $i = 0, ..., n - d + 1$, let

$$
\mathcal{F}^i = \{ F \in \mathcal{F} \mid x_i \in F \cap V \subseteq \{x_i, \ldots, x_n\} \}.
$$

Since $|F \cap V| \ge d$ for any $F \in \mathcal{F}$, we have that $\mathcal{F} = \bigcup_{i=0}^{n-d+1} \mathcal{F}^i$. Finally, let

$$
\tilde{\mathcal{F}} = \{ F_i(S_{d-3}) \mid S_{d-3} \subset \{ x_{i+2}, \ldots, x_{i+k-1} \} \text{ and } i = 0, \ldots, n-k-1 \}
$$

when $k \leq n - 1$, and set $\tilde{\mathcal{F}} = \emptyset$ otherwise.

As noted in the introduction, Lemma 11 will yield all the facets of P not containing x_0 or x_n . This next Lemma will enable us to prove it.

14. LEMMA: Let $k = \text{char } P, F \in \mathcal{F}$ with the vertex array $y_0 < y_1 < \cdots < y_s$ and $\{y_0, y_1\} = \{x_i, x_{i+1}\}.$ Then $y_{d-3} \leq x_{i+k-2}$.

Proof. If $i = 0$ then $y_{d-1} \leq x_k$ by 8.2, and the assertion follows. Let $i \geq 1$ and assume that if $\tilde{F} \in \mathcal{F}$ with the vertex array $z_0 < z_1 < \cdots < z_t$ and $\{z_0, z_1\} =$ ${x_{i-1}, x_i}$ then $z_{d-3} \leq x_{i+k-3}$.

Since $y_0 \neq x_0$ and $F \cap V$ is a Gale set, we have that $\{y_0, \ldots, y_{d-2}\}$ is a paired set and either $y_{d-1} = x_n$ or $s \ge d$ and $\{y_{d-1}, y_d\}$ is a paired set.

If $y_{d-1} = x_n$ then $F \in \mathcal{F}^*$. Now 9.2 implies that $S_{d-1} = \{x_i, x_{i+1}, y_0, \ldots, y_{d-2}\}$ $\subset \{x_{n-k},...,x_{n-1}\}\$ and $F = F_n(S_{d-1})$. Hence, $x_{n-k} \leq x_i$ and $y_{d-3} \leq x_{n-2} = x_i$ $x_{(n-k)+(k-2)} \leq x_{i+k-2}$. Let $s \geq d$ and, say,

$$
\{y_{d-3}, y_{d-2}, y_{d-1}, y_d\} = \{x_j, x_{j+1}, x_l, x_{l+1}\}.
$$

We note that

$$
G' = [y_0, y_2, \ldots, y_{d-1}] = [x_i, y_2, \ldots, y_{d-2}, x_l] \in \mathcal{F}_{d-2}.
$$

Let $F' \in \mathcal{F}$ with the vertex array $w_0 < w_1 < \cdots < w_r$ such that $F' \cap F = G'$. Since $F' \cap \{x_{i+1}, x_{l+1}\} = \emptyset$, we have that $\{x_{i-1}, x_{l-1}\} \subset F'$. Then $f_0(G') =$ $d-1 \leq 2d-5$ and 1.4 yield that $x_l = y_{d-1} = w_r$, and so $x_{l-1} = w_{r-1}$. From $f_0(G') = d-1$ and 1.3,

either
$$
G' = [w_{r-d+2}, \ldots, w_r]
$$
 or $G' = [w_{r-d+1}, \ldots, w_{r-2}, w_r]$.

In case of the former, y_1 and y_d are separated by the $d-2$ (odd) vertices y_2,\ldots,y_{d-1} of F' . Hence,

$$
[y_0,y_2,\ldots,y_{d-1}]=[w_{r-d+1},\ldots,w_{r-2},w_r]
$$

and

$$
\{w_{r-d},\ldots,w_r\}=\{x_{i-1},x_i,y_2,\ldots,y_{d-2},x_{l-1},x_l\}.
$$

Accordingly,

$$
\begin{aligned} \hat{G} &= [w_{r-d}, \dots, w_{r-3}, w_{r-1}, w_r] \\ &= [x_{i-1}, x_i, y_2, \dots, y_{d-3}, x_{l-1}, x_l] \in \mathcal{F}_{d-2}.\end{aligned}
$$

Let $\tilde{F} \in \mathcal{F}$ with the vertex array $z_0 < z_1 < \cdots < z_t$ such that $\tilde{F} \cap F' = \tilde{G}$. Since $f_0(\tilde{G}) = d \leq 2d - 5$, it follows from 1.4 that there is exactly one vertex z of \tilde{F} such that $z \notin \tilde{G}$ and $x_{i-1} \leq z \leq x_l$, and $z_0 = x_{i-1}$ or $z_t = x_l$. Since

$$
\{x_{i-1}, x_i, y_2, \ldots, y_{d-4}, x_{l-1}, x_l\}
$$

is a paired set, $x_j = y_{d-3}$ and $x_{j+1} = y_{d-2} \notin \tilde{F}$, it follows that $x_{j-1} \in \tilde{F}$ and $x_i < z \leq x_{i-1}$.

If $z_0 = x_{i-1}$ then $\{x_{l-1}, x_l\} = \{z_{d-1}, z_d\}$. Thus $z \leq x_{j-1}$ implies that $x_j =$ $y_{d-3} = z_{d-2}$, and $x_{j-1} = z_{d-3}$. By the induction, $x_{j-1} \le x_{i+k-3}$ and so $x_j \le$ x_{i+k-2} .

Let $z_t = x_l$. Then

 ${x_{i-1}, x_i} = {z_{t-d}, z_{t-d+1}}$ and ${x_{i-1}, x_i, x_{l-1}} = {z_{t-3}, z_{t-2}, z_{t-1}}.$

We note that

$$
G = [z_{u-d+2}, \ldots, z_{u-1}, z_{u+1}, \ldots, z_{u+d-2}]
$$

for some $t-d+2 \le u \le t-3$. Now $u \le t-3$ implies that $u-d+2 < t-d$. Therefore $z_{u-d+2} < z_{t-d}$ and our convention yield that $z_{t-d} = z_0$. Since $z_0 = x_{i-1}$, $y_{d-3} = x_j \leq x_{i+k-2}$ from above.

15. LEMMA: *Let P be an ordinary d-polytope with the vertex* array $x_0 < x_1 < \cdots < x_n$ and the characteristic k, $d = 2m + 1 \ge 5$. Then

$$
\mathcal{F}=F^0\cup \tilde{\mathcal{F}}\cup \mathcal{F}^*.
$$

Proof: Let $F \in \mathcal{F}$ with the vertex array $y_0 < y_1 < \cdots < y_s$. We may assume that $x_0 < y_0$. Then

$$
S_{d-1}^0 = \{y_0, \ldots, y_{d-2}\}
$$

is a paired set with, say, $\{y_0, y_1\} = \{x_i, x_{i+1}\}\$ and $\{y_{d-3}, y_{d-2}\} = \{x_j, x_{j+1}\}\$. By 14., $j \leq i + k - 2$; that is,

$$
S_{d-1}^0 \subseteq \{x_i, \ldots, x_{i+k-1}\} \cap \{x_{(j-k)+2}, \ldots, x_{j+1}\}.
$$

Then

$$
S_{d-3}^1 = \{y_0, \ldots, y_{d-4}\} \subset \{x_{(j-k)+2}, \ldots, x_{j-1}\}\
$$

and

$$
S_{d-3}^2 = \{y_2,\ldots,y_{d-2}\} \subset \{x_{i+2},\ldots,x_{i+k-1}\}.
$$

We note that $x_{j+1} = y_{d-2} \le x_{n-1}$ and $G = [y_0, \ldots, y_{d-2}] \in \mathcal{F}_{d-2}$.

If $i \ge n-k$ then $S^0_{d-1} \subset \{x_{n-k}, \ldots, x_{n-1}\}$ and 9.2 imply that $G \subset F_n(S^0_{d-1})$. If $i \leq n-k-1$ then $S^2_{d-3} \subset \{x_{i+2},\ldots,x_{i+k-1}\}\$ and 11. yield that $G \subset F_i(S^2_{d-3})$.

If $j \leq k - 1$ then $S_{d-1}^0 \subset \{x_1, \ldots, x_k\}$ and 8.2 imply that $G \subset F_0(S_{d-1}^0)$. If $j \geq k$ then $S_{d-3}^1 \subset \{x_{(j-k)+2}, \ldots, x_{(j-k)+k-1}\}, 0 \leq j-k \leq n-k-2$ and 11. yield that $G \subset F_{j-k}(S^1_{d-3})$.

Since G is the intersection of exactly two facets of P, it follows that $F \in \tilde{\mathcal{F}} \cup \mathcal{F}^{*}$. **|**

We can now list all the facets of P and it remains only to describe them in terms of their vertices. To that end, we use the decomposition

$$
\mathcal{F} = \bigcup_{i=0}^{n-d+1} \mathcal{F}^i.
$$

THEOREM B: *Let P be an ordinary d-polytope with* the vertex array $x_0 < x_1 < \cdots < x_n$ and the characteristic k, $d = 2m + 1 \geq 5$. Then

$$
f_{d-1}(P) = 2\binom{k-m}{m} + (n-k)\binom{k-m-2}{m-1}
$$

and, with $\{y_{i+1},..., y_{i+j}\}$ denoting a paired set of cardinality j, the following are *the facets of P.*

B1. *For* $j = d-2, ..., k-2$ and $\{y_1, ..., y_{d-3}\} \subset \{x_1, ..., x_{i-1}\},$

 $[x_0, y_1, \ldots, y_{d-3}, x_i, x_{i+1}].$

B2. *For* $r = 0, ..., m-2$ and $\{y_{2r+1}, ..., y_{d-3}\} \subset \{x_{2r+2}, ..., x_{k-2}\},$

$$
[x_0,\ldots,x_{2r},y_{2r+1},\ldots,y_{d-3},x_{k-1},\ldots,x_{k+2r}]
$$

and

$$
[x_0,\ldots,x_{d-3},x_{k-1},\ldots,x_{k+d-3}].
$$

B3. For $i = 0, \ldots, n - k - 1, r = 0, \ldots, m - 2,$

$$
\{y_{2r+2},\ldots,y_{d-2}\}\subset \{x_{i+2r+3},\ldots,x_{i+k-1}\}
$$

and $y_{d-2} \neq x_{k+i-1}$ *for* $i > 0$ *,*

$$
[x_i,\ldots,x_{i+2r+1},y_{2r+2},\ldots,y_{d-2},x_{k+i},\ldots,x_{k+i+2r+1}]
$$

and

$$
[x_i,\ldots,x_{i+d-2},x_{k+i},\ldots,x_{k+i+d-2}].
$$

B4. For $\{y_1,\ldots,y_{d-3}\}\subset \{x_{n-k+2},\ldots,x_{n-1}\}\$ and, $y_{d-3}\neq x_{n-1}$ if $k < n$, $[x_{n-k}, x_{n-k+1}, y_1, \ldots, y_{d-3}, x_n].$

B5. For $j = d - 2, ..., k - 2$ and $\{y_1, ..., y_{d-3}\} \subset \{x_{n-i+1}, ..., x_{n-1}\},$

$$
[x_{n-j-1}, x_{n-j}, y_1, \ldots, y_{d-3}, x_n].
$$

Proof B1: Let $d-2 \leq j \leq k-2$ and $S_{d-3} = \{y_1, \ldots, y_{d-3}\} \subset \{x_1, \ldots, x_{j-1}\}.$ Set

$$
S_{d-1} = S_{d-3} \cup \{x_j, x_{j+1}\} \text{ and } S_{d-3}^* = S_{d-1} \setminus \{y_1, y_2\}.
$$

From $S_{d-1} \subset \{x_1, \ldots, x_{k-1}\}\$ and 8.2,

$$
F_0(S_{d-1})\cap \{x_0,\ldots,x_k\}=\{x_0\}\cup S_{d-1}=\{x_0,y_1,\ldots,y_{d-3},x_j,x_{j+1}\}.
$$

Let $x_0 < y_1 < \cdots < y_s$ be the vertex array of $F_0(S_{d-1})$. Then $y_{d-1} = x_{j+1}$, and we need to show that $s = d - 1$. By 3., we may assume that $k < n$. Since 2.1 (with $r = 1$) implies that if $y_1 \neq x_1$ then $s < 1 + d - 1$, we may assume also that $y_1 = x_1$. Then $y_2 = x_2$ and $S_{d-3}^* \subset \{x_3, \ldots, x_k\}$. If $k < n-1$ then from 11.,

$$
F_1(S_{d-3}^*) \cap \{x_1,\ldots,x_{k+2}\} = \{x_1,x_2\} \cup S_{d-3}^* \cup \{x_{k+1},x_{k+2}\} = S_{d-1} \cup \{x_{k+1},x_{k+2}\}.
$$

Let $z_0 < z_1 < \cdots < z_t$ be the vertex array of $F_1(S^*_{d-3})$. We recall that $[x_0,x_1,x_k,x_{k+1}] \in \mathcal{F}_2$ by 12. Therefore, $x_k \notin F_1(S^*_{d-3})$ implies that $x_0 \notin$ $F_1(S^*_{d-3}),$ and $\{z_0,\ldots,z_{d-2}\}=S_{d-1}.$ Since

$$
G=[z_0,\ldots,z_{d-2}]=[y_1,y_2,\ldots,y_{d-3},x_j,x_{j+1}]
$$

is a $(d-2)$ -face of P such that $G \subset F_0(S_{d-1}), f_0(G) = d-1$ and $x_0 \notin G$, it follows from 1.3 that $y_s \in G$; that is, $y_{d-1} = x_{j+1} = y_s$.

If $k = n - 1$ then we need only that $x_n \notin F_0(S_{d-1})$. This is immediate since $[x_0,x_1,x_{n-1},x_n] \in \mathcal{F}_2$, $\{x_0,x_1\} \subset F_0(S_{d-1})$ and $x_{n-1} \notin F_0(S_{d-1})$.

B2. Let $0 \le r \le m-2$, $\{y_{2r+1}, \ldots, y_{d-3}\} \subset \{x_{2r+2}, \ldots, x_{k-2}\}$ and $S^r_{d-1} \subset$ ${x_1, \ldots, x_k}$ such that

$$
\{x_0\}\cup S_{d-1}^r=\{x_0,\ldots,x_{2r},y_{2r+1},\ldots,y_{d-3},x_{k-1},x_k\}.
$$

From 8.2,

$$
F_0(S_{d-1}^r) \cap \{x_0, \ldots, x_k\} = \{x_0\} \cup S_{d-1}^r.
$$

We may assume that $k < n$. Then $\{x_0, x_k\} \subset F_0(S^r_{d-1})$ and 12. yield that for $j=1,\ldots,n-k-1,$

$$
x_j \in F_0(S_{d-1}^r)
$$
 if and only if $x_{j+k} \in F_0(S_{d-1}^r)$.

Thus, $\{x_0, \ldots, x_{2r}\} \subset F_0(S^r_{d-1})$ implies that

$$
F_0(S_{d-1}^r) \cap \{x_0,\ldots,x_{k+2r}\} = \{x_0,\ldots,x_{2r},y_{2r+1},\ldots,y_{d-3},x_{k-1},\ldots,x_{k+2r}\}.
$$

Let $y_0 < y_1 < \cdots < y_s$ be the vertex array of $F_0(S_{d-1}^r)$. Then $x_{k+2r} = y_{d+2r-1}$, and $y_{2r+1} \neq x_{2r+1}$ and 2.1 imply that $s < 2r + 1 + d - 1 = d + 2r$.

We observe that with $S_{d-1} = \{x_1, \ldots, x_{d-3}, x_{k-1}, x_k\},$ 8.2 yields that

$$
F_0(S_{d-1})\cap \{x_0,\ldots,x_k\}=\{x_0,\ldots,x_{d-3},x_{k-1},x_k\}.
$$

Now, we argue as above and obtain that

$$
F_0(S_{d-1}) = [x_0, \ldots, x_{d-3}, x_{k-1}, \ldots, x_{k+d-3}].
$$

We may think of this facet as the $r = m - 1$ case.

B3. Let $0 \le i \le n-k-1, 0 \le r \le m-2$,

$$
\{y_{2r+2},\ldots,y_{d-2}\}\subset \{x_{i+2r+3},\ldots,x_{i+k-1}\}
$$

and $S_{d-3}^r \subset \{x_{i+2},...,x_{i+k-1}\}\$ such that

$$
\{x_i,x_{i+1}\}\cup S_{d-3}^r=\{x_i,\ldots,x_{i+2r+1},y_{2r+2},\ldots,y_{d-2}\}.
$$

From 11.,

$$
F_i(S_{d-3}^r) \cap \{x_i,\ldots,x_{i+k+1}\} = \{x_i,\ldots,x_{i+2r+1},y_{2r+2},\ldots,y_{d-2},x_{k+i},x_{k+i+1}\}.
$$

Since $\{x_i, \ldots, x_{i+2r+1}, x_{k+i}\} \subset F_i(S^r_{d-3})$ and $x_{i+2r+2} \notin F_i(S^r_{d-3})$, we apply 12. and 2.1 as above and obtain that

$$
F_i(S_{d-3}^r) \cap \{x_i,\ldots,x_n\} = \{x_i,\ldots,x_{i+2r+1,}y_{2r+2},\ldots,y_{d-2},x_{k+i},\ldots,x_{k+i+2r+1}\}.
$$

We may now assume that $i > 0$. As we are describing here the facets with the initial vertex x_i , it is an easy consequence of 2.2 and 12. that $y_{d-2} \neq x_{k+i-1}$ if and only if

$$
F_i(S_{d-3}^r) = [x_i, \ldots, x_{i+2r+1}, y_{2r+2}, \ldots, y_{d-2}, x_{k+i}, \ldots, x_{k+i+2r+1}].
$$

With $S_{d-3} = \{x_{i+2}, \ldots, x_{i+d-2}\}$, we have that

 $F_i(S_{d-3}) \cap \{x_i, \ldots, x_{i+k+1}\} = \{x_i, \ldots, x_{i+d-2}, x_{k+i}, x_{k+i+1}\}$

for $0 \leq i \leq n-k-1$. Noting that $x_{i+d-2} \neq x_{k+i-1}$ and arguing as above, we obtain that

$$
F_i(S_{d-3}) = [x_i, \ldots, x_{i+d-2}, x_{k+i}, \ldots, x_{k+i+d-2}].
$$

Again, we may think of this as the $r = m - 1$ case.

B4. Let $S_{d-3} = \{y_1, \ldots, y_{d-3}\} \subset \{x_{n-k+2}, \ldots, x_{n-1}\}.$ Then

 $S_{d-1} = \{x_{n-k}, x_{n-k+1}\} \cup S_{d-3} \subset \{x_{n-k}, \ldots, x_{n-1}\},$

and from 9.2,

$$
F_n(S_{d-1})\cap \{x_{n-k},\ldots,x_n\}=\{x_{n-k},x_{n-k+1},y_1,\ldots,y_{d-3},x_n\}.
$$

Now if $k < n$, we obtain from 2.2 and 12. that

$$
F_n(S_{d-1}) = [x_{n-k}, x_{n-k+1}, y_1, \ldots, y_{d-3}, x_n]
$$

if and only if $y_{d-3} \neq x_{n-1}$.

Bb. Apply B1 with the reverse vertex array.

Now, let $F \in \mathcal{F}^i$, $0 \leq i \leq n - d + 1$, have the vertex array $y_0 < y_1 < \cdots < y_s$. If $i = 0$ then by 8.2, either $\{y_1, \ldots, y_{d-1}\}$ is a paired subset of $\{x_1, \ldots, x_k\}$ [type B1 or B2] or $\{y_0, y_1, y_{d-1}\} = \{x_0, x_1, x_k\}$ and $\{y_2, \ldots, y_{d-2}\}$ is a paired subset of $\{x_2,...,x_{k-1}\}$ [type B3 $(k < n)$ or B4 $(k = n)$]. If $1 \le i \le n-k-1$ then $\{y_0, \ldots, y_{d-2}\}\$ is a paired set and by 14., $\{y_2, \ldots, y_{d-2}\}\subset \{x_{i+2}, \ldots, x_{i+k-1}\}\$ [type B3]. If $0 < n - k \le i \le n - d + 1$ then 9.2 yields that F is type B4 or B5.

Finally, we note that $d-3=2(m-1)$ and recall that

$$
\sum_{i=u}^{v} \binom{i}{u} = \binom{v+1}{u+1}.
$$

Clearly, there are

$$
2\sum_{j=d-2}^{k-2} p(m-1, j-1) = 2\sum_{j=d-2}^{k-2} {j-m \choose m-1}
$$

facets in B1 and B5. Since each facet in B2 is determined by an S_{d-3} \subset ${x_1, \ldots, x_{k-2}}$, there are $p(m-1, k-2) = {k-m-1 \choose m-1}$ of them.

Let $k = n$. Then each facet in B4 is determined by an $S_{d-3} \subset \{x_2, \ldots, x_{n-1}\}\$ and there are $p(m-1, n-2) = {n-m-1 \choose m-1}$ of them. Thus, in this case,

$$
f_{d-1}(P) = 2\left(\sum_{j=d-2}^{n-2} {j-m \choose m-1} + {n-m-1 \choose m-1}\right) = 2\sum_{j=d-2}^{n-1} {j-m \choose m-1}
$$

=
$$
2\sum_{i=d-2-m}^{n-m-1} {i \choose m-1} = 2\sum_{i=m-1}^{n-m-1} {i \choose m-1}
$$

=
$$
2{n-m \choose m}.
$$

Let $k < n$. Considering B3, each facet in $\mathcal{F}^0(\mathcal{F}^i, 1 \leq i \leq n-k-1)$ is determined by an $S_{d-3} \subset \{x_2, \ldots, x_{k-1}\} (\{x_{i+2}, \ldots, x_{i+k-2}\})$, and there are

$$
p(m-1,k-2)+(n-k-1)p(m-1,k-3) = {k-m-1 \choose m-1}+(n-k-1){k-m-2 \choose m-1}
$$

of them. In B4, each facet is determined by an $S_{d-3} \subset \{x_{n-k+2},\ldots,x_{n-2}\}\$ and there are $p(m - 1, k - 3) = {k - m - 2 \choose m - 1}$ of them. Therefore,

$$
f_{d-1}(P) = 2\left(\sum_{j=d-2}^{k-2} {j-m \choose m-1} + {k-m-1 \choose m-1}\right) + (n-k) {k-m-2 \choose m-1}
$$

= 2{k-m \choose m} + (n-k){k-m-2 \choose m-1}.

16. COROLLARY: *Let P be an ordinary d-polytope with the* vertex array $x_0 < x_1 < \cdots < x_n$ and the characteristic k, $d = 2m + 1 \geq 5$.

16.1 If $k = n$ then P is cyclic with the same vertex array.

16.2 *If* $k = d$ then $f_{d-1}(P) = n+1$ and the $(d-1)$ -faces of P are $[x_0, x_1, \ldots, x_{d-1}]$ $[x_{n-d+1}, \ldots, x_{n-1}, x_n]$ and $[x_{i-d+1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{i+d-1}]$ for $i=1,\ldots,n-1$.

Proof: 1. It is immediate that if $k = n$ then $\mathcal{F} = F^0 \cup F^*$ and P is simplicial. Theorem B or Lemmas 8.2 and 9.2 now yield that any d element Gale set of V is the set of vertices of a facet of P.

2. Let $k = d$. The assertion is trivial if $n = d$, and

$$
f_{d-1}(P) = 2\binom{m+1}{m} + (n-d)\binom{m-1}{m-1} = 2m+2+n-d = n+1.
$$

Let $F_i = [x_{i-d+1},...,x_{i-1}, x_{i+1},...,x_{i+d-1}]$ for $i = 1,...,n-1$, and assume that $d < n$.

From B1 and B5, we obtain $[x_0, \ldots, x_{d-1}]$ and $[x_{n-d+1}, \ldots, x_1]$, respectively. B2 yields F_i for odd $i = 1, ..., d-2$. B3 yields F_i for even $i = 2, ..., d-1$, and $i = d, \ldots, n-2$. Finally, B4 yields F_{n-1} .

4. Remarks and examples

It is clear that although we can describe ordinary $(2m + 1)$ -polytopes, further study is needed to really understand them. For example, 16.2 is a surprising result that hints of something special about ordinary $(2m + 1)$ -polytopes with characteristic $2m + 1$, $m \ge 2$. Also, while the present definition of an ordinary d-polytope is a reasonable one because it recognizes the parity of d , it does not indicate in any way how to obtain non-cyclic ordinary $2m$ -polytopes. Is there a better definition of ordinary $(2m + 1)$ -polytopes? This relates of course to the problem of a second definition of an ordinary d-polytope that yields cyclic $(2m + 1)$ -polytopes and non-trivial $2m$ -polytopes.

Next, the difference between the theory of ordinary 3-polytopes and that of those of higher dimension. From [1], we note that if P is an ordinary 3-polytope with $f_0(P) = n + 1$ and char $P = k$ then

$$
\left[\frac{n}{2}\right] + k \le f_2(P) \le n + k - 2 = 2{k-1 \choose 1} + (n-k){k-3 \choose 0}.
$$

Thus, P is not combinatorially unique. It is somewhat surprising that already an ordinary 5-polytope with $n+1$ vertices and characteristic k is combinatorially unique.

Finally, we refer to [1] for examples of ordinary 3-polytopes. Below, we present two examples of higher dimensional ones. In each case, the polytope is ddimensional with the vertex array $x_0 < x_1 < \cdots < x_n$ and the characteristic $k, d = 2m + 1$. We specify the polytope by (n, k, d) and denote the facets using the subscripts of the x_i 's. We list the facets via Theorem B.

Example 1: $(n, k, d) = (7, 6, 5)$ and $f_4 = 14$.

- **BI: [0, 1, 2, 3, 4], [0, 1, 2, 4, 5], [0, 2, 3, 4, 5];**
- **B2: [0, 2, 3, 5, 6], [0, 3, 4, 5, 6], [0, 1, 2, 5, 6, 7];**
- **e3: [0, 1, 3, 4, 6, 7], [0, 1, 4, 5, 6, 7], [0, 1, 2, 3, 6, 7];**
- **e4: [1, 2, 3, 4, 7], [1, 2, 4, 5, 7];**

B5: [2, 3, 4, 5, 7], [2, 3, 5, 6, 7], [3, 4, 5, 6, 7].

Example 2: $(n, k, d) = (10, 8, 7)$ and $f_6 = 26$.

- $B1: \quad [0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 6, 7], [0, 1, 2, 4, 5, 6, 7], [0, 2, 3, 4, 5, 6, 7];$
- $B2: [0, 2, 3, 4, 5, 7, 8], [0, 2, 3, 5, 6, 7, 8], [0, 3, 4, 5, 6, 7, 8],$ $[0, 1, 2, 4, 5, 7, 8, 9, 10], [0, 1, 2, 5, 6, 7, 8, 9, 10], [0, 1, 2, 3, 4, 7, 8, 9, 10];$
- B3: $[0, 1, 3, 4, 5, 6, 8, 9], [0, 1, 3, 4, 6, 7, 8, 9], [0, 1, 4, 5, 6, 7, 8, 9],$ $[0, 1, 2, 3, 5, 6, 8, 9, 10], [0, 1, 2, 3, 6, 7, 8, 9, 10],$ $[1,2,4,5,6,7,9,10]$, $[1,2,3,4,6,7,9,10]$, $[0, 1, 2, 3, 4, 5, 8, 9, 10]$, $[1, 2, 3, 4, 5, 6, 9, 10]$;
- $B4: \{ [2, 3, 4, 5, 6, 7, 10], [2, 3, 4, 5, 7, 8, 10], [2, 3, 5, 6, 7, 8, 10] \}$
- $B5: [3, 4, 5, 6, 7, 8, 10], [3, 4, 5, 6, 8, 9, 10], [3, 4, 6, 7, 8, 9, 10], [4, 5, 6, 7, 8, 9, 10].$

References

- [1] T. Bisztriczky, *Ordinary 3-polytopes,* Geometriae Dedicata 52 (1994), 129-142.
- [2] D. Gale, *Neighborly and cyclic polytopes,* Proceedings of Symposia in Pure Mathematics 7 (convexity) (1963), 225-232.
- [3] H.W. Gould, *Combinatorial Identities*, Morgantown Printing, W. Virginia, 1972.
- [4] B. Grünbaum, *Convex Polytopes*, Interscience, New York, 1967.
- [5] G. C. Shephard, *A theorem on cyclic polytopes,* Israel Journal of Mathematics 6 (1968), 368-372.